217 research outputs found

    Multi-drug resistance, inappropriate initial antibiotic therapy and mortality in Gram-negative severe sepsis and septic shock: A retrospective cohort study

    Get PDF
    INTRODUCTION: The impact of in vitro resistance on initially appropriate antibiotic therapy (IAAT) remains unclear. We elucidated the relationship between non-IAAT and mortality, and between IAAT and multi-drug resistance (MDR) in sepsis due to Gram-negative bacteremia (GNS). METHODS: We conducted a single-center retrospective cohort study of adult intensive care unit patients with bacteremia and severe sepsis/septic shock caused by a gram-negative (GN) organism. We identified the following MDR pathogens: MDR P. aeruginosa, extended spectrum beta-lactamase and carbapenemase-producing organisms. IAAT was defined as exposure within 24 hours of infection onset to antibiotics active against identified pathogens based on in vitro susceptibility testing. We derived logistic regression models to examine a) predictors of hospital mortality and b) impact of MDR on non-IAAT. Proportions are presented for categorical variables, and median values with interquartile ranges (IQR) for continuous. RESULTS: Out of 1,064 patients with GNS, 351 (29.2%) did not survive hospitalization. Non-survivors were older (66.5 (55, 73.5) versus 63 (53, 72) years, P = 0.036), sicker (Acute Physiology and Chronic Health Evaluation II (19 (15, 25) versus 16 (12, 19), P <0.001), and more likely to be on pressors (odds ratio (OR) 2.79, 95% confidence interval (CI) 2.12 to 3.68), mechanically ventilated (OR 3.06, 95% CI 2.29 to 4.10) have MDR (10.0% versus 4.0%, P <0.001) and receive non-IAAT (43.4% versus 14.6%, P <0.001). In a logistic regression model, non-IAAT was an independent predictor of hospital mortality (adjusted OR 3.87, 95% CI 2.77 to 5.41). In a separate model, MDR was strongly associated with the receipt of non-IAAT (adjusted OR 13.05, 95% CI 7.00 to 24.31). CONCLUSIONS: MDR, an important determinant of non-IAAT, is associated with a three-fold increase in the risk of hospital mortality. Given the paucity of therapies to cover GN MDRs, prevention and development of new agents are critical

    Predictors of hospital mortality among septic ICU patients with Acinetobacter spp. bacteremia: A cohort study

    Get PDF
    BACKGROUND: We hypothesized that among septic ICU patients with Acinetobacter spp. bacteremia (Ac-BSI), carbapenem-resistant Acinetobacter spp. (CRAc) increase risk for inappropriate initial antibiotic therapy (non-IAAT), and non-IAAT is a predictor of hospital death. METHODS: We conducted a retrospective cohort study of adult septic ICU patients with Ac-BSI. Non-IAAT was defined as exposure to initially prescribed antibiotics not active against the pathogen based on in vitro susceptibility testing, and having no exposure to appropriate antimicrobial treatment within 24 hours of drawing positive culture. We compared patients who died to those who survived, and derived regression models to identify predictors of hospital mortality and of non-IAAT. RESULTS: Out of 131 patients with Ac-BSI, 65 (49.6%) died (non-survivors, NS). NS were older (63 [51, 76] vs. 56 [45, 66] years, p = 0.014), and sicker than survivors (S): APACHE II (24 [19, 31] vs. 18 [13, 22], p < 0.001) and Charlson (5 [2, 8] vs. 3 [1, 6], p = 0.009) scores. NS were also more likely than S to require pressors (75.4% vs. 42.4%, p < 0.001) and mechanical ventilation (75.4% vs. 53.0%, p = 0.008). Both CRAc (69.2% vs. 47.0%, p = 0.010) and non-IAAT (83.1% vs. 59.1%, p = 0.002) were more frequent among NS than S. In multivariate analyses, non-IAAT emerged as an independent predictor of hospital death (risk ratio [RR] 1.42, 95% confidence interval [CI] 1.10-1.58), while CRAc was the single strongest predictor of non-IAAT (RR 2.66, 95% CI 2.43-2.72). CONCLUSIONS: Among septic ICU patients with Ac-BSI, non-IAAT predicts mortality. Carbapenem resistance appears to mediate the relationship between non-IAAT and mortality

    Multidrug resistance, inappropriate empiric treatment and hospital mortality in Acinetobacter baumannii pneumonia and sepsis

    Get PDF
    Background: The relationship between multidrug resistance (MDR), inappropriate empiric therapy (IET), and mortality among patients with Acinetobacter baumannii (AB) remains unclear. We examined it using a large U.S. database. Methods: We conducted a retrospective cohort study using the Premier Research database (2009–2013) of 175 U.S. hospitals. We included all adult patients admitted with pneumonia or sepsis as their principal diagnosis, or as a secondary diagnosis in the setting of respiratory failure, along with antibiotic administration within 2 days of admission. Only culture-confirmed infections were included. Resistance to at least three classes of antibiotics defined multidrug-resistant AB (MDR-AB). We used logistic regression to compute the adjusted relative risk ratio (RRR) of patients with MDR-AB receiving IET and IET’s impact on mortality. Results: Among 1423 patients with AB infection, 1171 (82.3 %) had MDR-AB. Those with MDR-AB were older (63.7 ± 15.4 vs. 61.0 ± 16.9 years, p = 0.014). Although chronic disease burden did not differ between groups, the MDR-AB group had higher illness severity than those in the non-MDR-AB group (intensive care unit 68.0 % vs. 59. 5 %, p < 0.001; mechanical ventilation 56.2 % vs. 42.1 %, p < 0.001). Patients with MDR-AB were more likely to receive IET than those in the non-MDR-AB group (76.2 % MDR-AB vs. 13.8 % non-MDR-AB, p < 0.001). In a regression model, MDR-AB strongly predicted receipt of IET (adjusted RRR 5.5, 95 % CI 4.0–7.7, p < 0.001). IET exposure was associated with higher hospital mortality (adjusted RRR 1.8, 95 % CI 1.4–2.3, p < 0.001). Conclusions: In this large U.S. database, the prevalence of MDR-AB among patients with AB infection was > 80 %. Harboring MDR-AB increased the risk of receiving IET more than fivefold, and IET nearly doubled hospital mortality

    Prolonged acute mechanical ventilation and hospital bed utilization in 2020 in the United States: implications for budgets, plant and personnel planning

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adult patients on prolonged acute mechanical ventilation (PAMV) comprise 1/3 of all adult MV patients, consume 2/3 of hospital resources allocated to MV population, and are nearly twice as likely to require a discharge to a skilled nursing facility (SNF). Their numbers are projected to double by year 2020. To aid in planning for this growth, we projected their annualized days and costs of hospital use and SNF discharges in year 2020 in the US.</p> <p>Methods</p> <p>We constructed a model estimating the relevant components of hospital utilization. We computed the total days and costs for each component; we also applied the risk for SNF discharge to the total 2020 PAMV population. The underlying assumption was that process of care does not change over the time horizon. We performed Monte Carlo simulations to establish 95% confidence intervals (CI) for the point estimates.</p> <p>Results</p> <p>Given 2020 projected PAMV volume of 605,898 cases, they will require 3.6 (95% CI 2.7–4.8) million MV, 5.5 (95% CI 4.3–7.0) million ICU and 10.3 (95% CI 8.1–13.0) million hospital days, representing an absolute increase of 2.1 million MV, 3.2 million ICU and 6.5 million hospital days over year 2000, at a total inflation-adjusted cost of over $64 billion. Expected discharges to SNF are 218,123 (95% CI 177,268–266,739), compared to 90,928 in 2000.</p> <p>Conclusion</p> <p>Our model suggest that the projected growth in the US in PAMV population by 2020 will result in annualized increases of more than 2, 3, and 6 million MV, ICU and hospital days, respectively, over year 2000. Such growth requires careful planning efforts and attention to efficiency of healthcare delivery.</p

    Skin and soft tissue infections in hospitalized and critically ill patients: a nationwide population-based study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The proportional distributions of various skin and soft tissue infections (SSTIs) with/without intensive care are unclear. Among SSTI patients, the prevalence and significance of complicating factors, such as comorbidities and infections other than skin/soft tissue (non-SST infections), remain poorly understood. We conducted this population-based study to characterize hospitalized SSTI patients with/without intensive care and to identify factors associated with patient outcome.</p> <p>Methods</p> <p>We analyzed first-episode SSTIs between January 1, 2005 and December 31, 2007 from the hospitalized claims data of a nationally representative sample of 1,000,000 people, about 5% of the population, enrolled in the Taiwan National Health Insurance program. We classified 18 groups of SSTIs into three major categories: 1) superficial; 2) deeper or healthcare-associated; and 3) gangrenous or necrotizing infections. Multivariate logistic regression models were applied to identify factors associated with intensive care unit (ICU) admission and hospital mortality.</p> <p>Results</p> <p>Of 146,686 patients ever hospitalized during the 3-year study period, we identified 11,390 (7.7%) patients having 12,030 SSTIs. Among these SSTI patients, 1,033 (9.1%) had ICU admission and 306 (2.7%) died at hospital discharge. The most common categories of SSTIs in ICU and non-ICU patients were "deeper or healthcare-associated" (62%) and "superficial" (60%) infections, respectively. Of all SSTI patients, 45.3% had comorbidities and 31.3% had non-SST infections. In the multivariate analyses adjusting for demographics and hospital levels, the presence of several comorbid conditions was associated with ICU admission or hospital mortality, but the results were inconsistent across most common SSTIs. In the same analyses, the presence of non-SST infections was consistently associated with increased risk of ICU admission (adjusted odds ratios [OR] 3.34, 95% confidence interval [CI] 2.91-3.83) and hospital mortality (adjusted OR 5.93, 95% CI 4.57-7.71).</p> <p>Conclusions</p> <p>The proportional distributions of various SSTIs differed between ICU and non-ICU patients. Nearly one-third of hospitalized SSTI patients had non-SST infections, and the presence of which predicted ICU admission and hospital mortality.</p

    Early response to antibiotic treatment in European patients hospitalized with complicated skin and soft tissue infections: analysis of the REACH study

    Get PDF
    Background: The treatment of complicated skin and soft tissue infections (cSSTI) is challenging and many patients do not receive adequate first-line therapy. REACH (REtrospective Study to Assess the Clinical Management of Patients With Moderate-to-Severe cSSTI or Community-Acquired Pneumonia in the Hospital Setting) was a retrospective observational study of cSSTI patients in real-life settings in European hospitals. In this analysis, we review characteristics and outcomes of patients with an early response (<= 72 hours) compared with those without an early response to treatment. We also compare the results according to two differing definitions of early response, one of which (Definition 1) requires resolution of fever within 72 hours, in line with previous US FDA guidelines. Methods: Patients were adults hospitalized with cSSTIs 2010-2011 and requiring treatment with intravenous antibiotics. Clinical management, clinical outcomes and healthcare resource use were assessed using a descriptive analysis approach. Results: The analysis set included 600 patients, of which 363 showed early response with Definition 1 and 417 with Definition 2. Initial treatment modification was frequent, and highest in patients without early response (48.1% with Definition 1). Patients without early response were more likely to have diabetes than those with early response (31.6% vs. 22.9%,respectively) and to suffer from more severe disease (e.g. skin necrosis: 14.8% and 7.7%,respectively), to be infected with difficult-to-treat microorganisms and to have recurrent infections. Furthermore, patients without early response had a higher rate of adverse clinical outcomes (e.g. septic shock) and higher use of healthcare resources. The results obtained with the two definitions for early response were largely similar. Conclusions: This study highlights the significance of early evaluation of patients in hospitals, in potentially preventing prolonged use of inappropriate or ineffective antibacterial therapy

    Diarrhoea in the critically ill is common, associated with poor outcome, and rarely due to Clostridium difficile

    Get PDF
    Diarrhoea is common in Intensive Care Unit (ICU) patients, with a reported prevalence of 15-38%. Many factors may cause diarrhoea, including Clostridium difficile, drugs (e.g. laxatives, antibiotics) and enteral feeds. Diarrhoea impacts on patient dignity, increases nursing workload and healthcare costs, and exacerbates morbidity through dermal injury, impaired enteral uptake and subsequent fluid imbalance. We analysed a cohort of 9331 consecutive patients admitted to a mixed general intensive care unit to establish the prevalence of diarrhoea in intensive care unit patients, and its relationship with infective aetiology and clinical outcomes. We provide evidence that diarrhoea is common (12.9% (1207/9331) prevalence) in critically ill patients, independently associated with increased intensive care unit length of stay (mean (standard error) 14.8 (0.26) vs 3.2 (0.09) days, p < 0.001) and mortality (22.0% (265/1207) vs 8.7% (705/8124), p < 0.001; adjusted hazard ratio 1.99 (95% CI 1.70-2.32), p < 0.001) compared to patients without diarrhoea even after adjusting for potential confounding factors, and infrequently caused by infective aetiology (112/1207 (9.2%)) such as Clostridium difficile (97/1048 (9.3%) tested) or virological causes (9/172 (5.7%) tested). Our findings suggest non-infective causes of diarrhoea in ICU predominate and pathophysiology of diarrhoea in critically ill patients warrants further investigation

    The impact of the introduction of fidaxomicin on the management of Clostridium difficile infection in seven NHS secondary care hospitals in England: a series of local service evaluations.

    Get PDF
    Clostridium difficile infection (CDI) is associated with high mortality. Reducing incidence is a priority for patients, clinicians, the National Health Service (NHS) and Public Health England alike. In June 2012, fidaxomicin (FDX) was launched for the treatment of adults with CDI. The objective of this evaluation was to collect robust real-world data to understand the effectiveness of FDX in routine practice. In seven hospitals introducing FDX between July 2012 and July 2013, data were collected retrospectively from medical records on CDI episodes occurring 12 months before/after the introduction of FDX. All hospitalised patients aged ≥18 years with primary CDI (diarrhoea with presence of toxin A/B without a previous CDI in the previous 3 months) were included. Recurrence was defined as in-patient diarrhoea re-emergence requiring treatment any time within 3 months after the first episode. Each hospital had a different protocol for the use of FDX. In hospitals A and B, where FDX was used first line for all primary and recurrent episodes, the recurrence rate reduced from 10.6 % to 3.1 % and from 16.3 % to 3.1 %, with a significant difference in 28-day mortality from 18.2 % to 3.1 % (p < 0.05) and 17.3 % to 6.3 % (p < 0.05) for hospitals A and B, respectively. In hospitals using FDX in selected patients only, the changes in recurrence rates and mortality were less marked. The pattern of adoption of FDX appears to affect its impact on CDI outcome, with maximum reduction in recurrence and all-cause mortality where it is used as first-line treatment
    • …
    corecore