234 research outputs found

    Protein Kinase A Activity and Anchoring Are Required for Ovarian Cancer Cell Migration and Invasion

    Get PDF
    Epithelial ovarian cancer (EOC) is the deadliest of the gynecological malignancies, due in part to its clinically occult metastasis. Therefore, understanding the mechanisms governing EOC dissemination and invasion may provide new targets for antimetastatic therapies or new methods for detection of metastatic disease. The cAMP-dependent protein kinase (PKA) is often dysregulated in EOC. Furthermore, PKA activity and subcellular localization by A-kinase anchoring proteins (AKAPs) are important regulators of cytoskeletal dynamics and cell migration. Thus, we sought to study the role of PKA and AKAP function in both EOC cell migration and invasion. Using the plasma membrane-directed PKA biosensor, pmAKAR3, and an improved migration/invasion assay, we show that PKA is activated at the leading edge of migrating SKOV-3 EOC cells, and that inhibition of PKA activity blocks SKOV-3 cell migration. Furthermore, we show that while the PKA activity within the leading edge of these cells is mediated by anchoring of type-II regulatory PKA subunits (RII), inhibition of anchoring of either RI or RII PKA subunits blocks cell migration. Importantly, we also show – for the first time – that PKA activity is up-regulated at the leading edge of SKOV-3 cells during invasion of a three-dimensional extracellular matrix and, as seen for migration, inhibition of either PKA activity or AKAP-mediated PKA anchoring blocks matrix invasion. These data are the first to demonstrate that the invasion of extracellular matrix by cancer cells elicits activation of PKA within the invasive leading edge and that both PKA activity and anchoring are required for matrix invasion. These observations suggest a role for PKA and AKAP activity in EOC metastasis

    Late Holocene Sedimentation and Paleoenvironmental History for the Tidal Marshes of the Potomac and Rappahannock Rivers, Tributaries to Chesapeake Bay

    Get PDF
    Instrumental tide gauge records indicate that the modern rates of sea-level rise in the Chesapeake Bay more than double the global average of 1.2-1.5 mm yr-1. The primary objective for this study is to establish a relative depositional history for the tidal marshes of the Potomac and Rappahannock Rivers that will help us improve our understanding of processes that influence sedimentation in the proximal tributaries of Chesapeake Bay. Marsh cores were collected from Blandfield Point VA, Tappahannock VA, and Potomac Creek VA. The sedimentary facies include: 1) a lower unit of organic-poor, grey clay with fine sand and silt layers and estuarine foraminifera; and 2) an upper unit of organic-rich clay and peat with abundant brackish to freshwater marsh foraminifera and thecamoebians. AMS 14C dating of bulk marsh sediments yield sedimentation rates at Potomac Creek ranging from 3.04-4.20 mm yr-1 for the past 2500 years. Rates of sedimentation calculated for Blandfield Point indicate 1.37-2.19 mm yr-1 in the basal clays and peat for the past ~3000 years. Foraminiferal census counts indicate a freshening upward trend with a transition from an estuarine Ammobaculites crassus assemblage to a marsh Ammoastuta salsa assemblage with abundant freshwater thecamoebians. The late Holocene history of sedimentation for the marshes indicates that differential compaction, recent land use practices, and climate change have contributed to the resultant freshening-upward environmental trend and variability in sediment accumulation rates between coring sites

    Oral Transmissibility of Prion Disease Is Enhanced by Binding to Soil Particles

    Get PDF
    Soil may serve as an environmental reservoir for prion infectivity and contribute to the horizontal transmission of prion diseases (transmissible spongiform encephalopathies [TSEs]) of sheep, deer, and elk. TSE infectivity can persist in soil for years, and we previously demonstrated that the disease-associated form of the prion protein binds to soil particles and prions adsorbed to the common soil mineral montmorillonite (Mte) retain infectivity following intracerebral inoculation. Here, we assess the oral infectivity of Mte- and soil-bound prions. We establish that prions bound to Mte are orally bioavailable, and that, unexpectedly, binding to Mte significantly enhances disease penetrance and reduces the incubation period relative to unbound agent. Cox proportional hazards modeling revealed that across the doses of TSE agent tested, Mte increased the effective infectious titer by a factor of 680 relative to unbound agent. Oral exposure to Mte-associated prions led to TSE development in experimental animals even at doses too low to produce clinical symptoms in the absence of the mineral. We tested the oral infectivity of prions bound to three whole soils differing in texture, mineralogy, and organic carbon content and found soil-bound prions to be orally infectious. Two of the three soils increased oral transmission of disease, and the infectivity of agent bound to the third organic carbon-rich soil was equivalent to that of unbound agent. Enhanced transmissibility of soil-bound prions may explain the environmental spread of some TSEs despite the presumably low levels shed into the environment. Association of prions with inorganic microparticles represents a novel means by which their oral transmission is enhanced relative to unbound agent

    Sex differences in exercise-induced diaphragmatic fatigue in endurance-trained athletes

    Get PDF
    There is evidence that female athletes may be more susceptible to exercise-induced arterial hypoxemia and expiratory flow limitation and have greater increases in operational lung volumes during exercise relative to men. These pulmonary limitations may ultimately lead to greater levels of diaphragmatic fatigue in women. Accordingly, the purpose of this study was to determine whether there are sex differences in the prevalence and severity of exercise-induced diaphragmatic fatigue in 38 healthy endurance-trained men (n = 19; maximal aerobic capacity = 64.0 ± 1.9 ml·kg–1·min–1) and women (n = 19; maximal aerobic capacity = 57.1 ± 1.5 ml·kg–1·min–1). Transdiaphragmatic pressure (Pdi) was calculated as the difference between gastric and esophageal pressures. Inspiratory pressure-time products of the diaphragm and esophagus were calculated as the product of breathing frequency and the Pdi and esophageal pressure time integrals, respectively. Cervical magnetic stimulation was used to measure potentiated Pdi twitches (Pdi,tw) before and 10, 30, and 60 min after a constant-load cycling test performed at 90% of peak work rate until exhaustion. Diaphragm fatigue was considered present if there was a 15% reduction in Pdi,tw after exercise. Diaphragm fatigue occurred in 11 of 19 men (58%) and 8 of 19 women (42%). The percent drop in Pdi,tw at 10, 30, and 60 min after exercise in men (n = 11) was 30.6 ± 2.3, 20.7 ± 3.2, and 13.3 ± 4.5%, respectively, whereas results in women (n = 8) were 21.0 ± 2.1, 11.6 ± 2.9, and 9.7 ± 4.2%, respectively, with sex differences occurring at 10 and 30 min (P < 0.05). Men continued to have a reduced contribution of the diaphragm to total inspiratory force output (pressure-time product of the diaphragm/pressure-time product of the esophagus) during exercise, whereas diaphragmatic contribution in women changed very little over time. The findings from this study point to a female diaphragm that is more resistant to fatigue relative to their male counterparts

    Mechanisms for covalent immobilization of horseradish peroxi-dase on ion beam treated polyethylene

    Get PDF
    The mechanism that provides the observed strong binding of biomolecules to polymer sur-faces modified by ion beams is investigated. The surface of polyethylene (PE) was modified by plasma immersion ion implantation with nitrogen ions. Structure changes including car-bonization and oxidation were observed in the modified surface layer of PE by Raman spec-troscopy, FTIR ATR spectroscopy, atomic force microscopy, surface energy measurement and XPS spectroscopy. An observed high surface energy of the modified polyethylene was attributed to the presence of free radicals on the surface. The surface energy decay with stor-age time after PIII treatment was explained by a decay of the free radical concentration while the concentration of oxygen-containing groups increased with storage time. Horseradish per-oxidase was covalently attached onto the modified PE surface. The enzymatic activity of co-valently attached protein remained high. A mechanism based on the covalent attachment by the reaction of protein with free radicals in the modified surface is proposed. Appropriate blocking agents can block this reaction. All aminoacid residues can take part in the covalent attachment process, providing a universal mechanism of attachment for all proteins. The long-term activity of the modified layer to attach protein (at least 2 years) is explained by stabilisa-tion of unpaired electrons in sp2 carbon structures. The native conformation of attached pro-tein is retained due to hydrophilic interactions in the interface region. A high concentration of free radicals on the surface can give multiple covalent bonds to the protein molecule and de-stroy the native conformation and with it the catalytic activity. The universal mechanism of protein attachment to free radicals could be extended to various methods of radiation damage of polymers

    Water-silicone separated volumetric MR acquisition for rapid assessment of breast implants

    Get PDF
    Purpose: To develop a robust T2-weighted volumetric imaging technique with uniform water-silicone separation and simultaneous fat suppression for rapid assessment of breast implants in a single acquisition. Materials and Methods: A three-dimensional (3D) fast spin echo sequence that uses variable refocusing flip angles was combined with a three-point chemical-shift technique (IDEAL) and short tau inversion recovery (STIR). Phase shifts of -π/6, +π/2, and +7π/6 between water and silicone were used for IDEAL processing. For comparison, two-dimensional images using 2D-FSE-IDEAL with STIR were also acquired in axial, coronal, and sagittal orientations. Results: Near-isotropic (true spatial resolution-0.9 ×1.3 × 2.0 mm 3) volumetric breast images with uniform water-silicone separation and simultaneous fat suppression were acquired successfully in clinically feasible scan times (7:00-10:00 min). The 2D images were acquired with the same in-plane resolution (0.9 × 1.3 mm 2), but the slice thickness was increased to 6 mm with a slice gap of 1 mm for complete coverage of the implants in a reasonable scan time, which varied between 18:00 and 22:30 min. Conclusion: The single volumetric acquisition with uniform water and silicone separation enables images to be reformatted into any orientation. This allows comprehensive assessment of breast implant integrity in less than 10 min of total examination time. © 2012 Wiley Periodicals, Inc

    Atom--Molecule Coherence in a Bose-Einstein Condensate

    Full text link
    Coherent coupling between atoms and molecules in a Bose-Einstein condensate (BEC) has been observed. Oscillations between atomic and molecular states were excited by sudden changes in the magnetic field near a Feshbach resonance and persisted for many periods of the oscillation. The oscillation frequency was measured over a large range of magnetic fields and is in excellent quantitative agreement with the energy difference between the colliding atom threshold energy and the energy of the bound molecular state. This agreement indicates that we have created a quantum superposition of atoms and diatomic molecules, which are chemically different species.Comment: 7 pages, 6 figure
    corecore