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ABSTRACT

Instrumental tide gauge records indicate that the modern rates of sea-level rise

in the Chesapeake Bay more than double the global average of 1.2-1.5 mm

yr-1. The primary objective for this study is to establish a relative depositional

history for the tidal marshes of the Potomac and Rappahannock Rivers that

will help us improve our understanding of processes that influence

sedimentation in the proximal tributaries of Chesapeake Bay. Marsh cores

were collected from Blandfield Point VA, Tappahannock VA, and Potomac

Creek VA. The sedimentary facies include: 1) a lower unit of organic-poor,

grey clay with fine sand and silt layers and estuarine foraminifera; and 2) an

upper unit of organic-rich clay and peat with abundant brackish to freshwater

marsh foraminifera and thecamoebians. AMS 14C dating of bulk marsh

sediments yield sedimentation rates at Potomac Creek ranging from 3.04-4.20

mm yr-1 for the past 2500 years. Rates of sedimentation calculated for

Blandfield Point indicate 1.37-2.19 mm yr-1 in the basal clays and peat for the

past ~3000 years. Foraminiferal census counts indicate a freshening upward

trend with a transition from an estuarine Ammobaculites crassus assemblage

to a marsh Ammoastuta salsa assemblage with abundant freshwater

Thecamoebians. The late Holocene history of sedimentation for the marshes

indicates that differential compaction, recent land use practices, and climate

change have contributed to the resultant freshening-upward environmental

trend and variability in sediment accumulation rates between coring sites.
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INTRODUCTION

The Chesapeake Bay watershed comprises numerous tributaries draining from the

eastern Appalachian Mountains. The central axis to the Chesapeake has been evaluated

in the context of decadal, centennial, and millennial climate changes (Cronin and others

2005, 2010). In the historic Northern Neck region of Virginia, the tidal reaches of the

Rappahannock and Potomac Rivers (Fig. 1) have received little detailed study with

respect to the nature of the sedimentary record spanning the past several thousand

years. Recent estimates for eustatic sea level are estimated to be as high as 1.5-1.88 mm

yr  (Church and White 2006, Nerem and others 2006) whereas the instrumental tidal-1

FIGURE 1. Location map for the tidal reaches of the Potomac and Rappahannock

Rivers. Table1 lists the coordinates and detailed coring information for Sites A-C.

Table 2 list coordinates and details for the tide gauge stations (Sites 1-4). Inset shows

our location along the eastern Atlantic coast of the USA.
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records from the Chesapeake Bay indicate rates as high as ~3-4 mm yr  (Boon 2012).-1

The disparity between global and regional base level change in the Chesapeake Bay is

not well understood and likely reflects the combined effects of allogenic, autogenic,

and anthropogenic processes in the region (Cronin 2012). The primary objective for this

paper is to establish a late Holocene sedimentation and paleoenvironmental history for

the tidal reaches of the Potomac and Rappahannock Rivers in the Northern Neck region

of Virginia, USA. Our primary analytical tools include physical stratigraphy (loss on

ignition, grain size, and magnetic susceptibility), foraminiferal paleoecology, and AMS

C geochronology applied to cores collected from the central estuarine region of the14

tidal Potomac and Rappahannock Rivers.

BACKGROUND

The Chesapeake Bay is the largest estuary in the United States, with shores

bordering the states of Virginia, Maryland, and the District of Columbia. The watershed

area of this coastal plain estuary is 167,000 km  that includes the following major2

tributaries: Susquehanna, Potomac, Rappahannock, York, and James Rivers (Boesh and

others 2001). The Chesapeake Bay is the product of Holocene sea-level rise formed by

fluvial incision coupled with the inundation of river valleys following the terminus of

the last glacial maximum (Schubel and Pritchard 1986). The Chesapeake Bay is located

in an apparently inactive tectonic region on the North American passive margin.

However, many Cretaceous age faults have been identified in close proximity to our

localities in the Fredericksburg, VA (Table 1) which marks the transition from the

Piedmont region (west) to the coastal plain (east) in Virginia (Fig. 1) (Berquist and

Bailey 1999). Lower Tertiary sedimentary deposits in the region include fine-to coarse

glauconitic quartz sand and clay-silt of the Lower Tertiary Pamunkey Group

(Brightseat, Aquia, Marlboro, Nanjemoy, and Piney Point formations) (Mixon and

others 1989). 

TABLE 1. List of sampling localities from the Potomac and  Rappahannock

tidewater region of Virginia and Maryland.

Site Location Longitude Latitude Geographic Info

Site A Blandfield Point

VA

76°54'40.436"W  38°0'6.911"N Blandfield M arsh on

Rappahannock River

(proximal estuarine zone

0-5 ppt)

Site B Tappahannock

Harbor VA

76°51'15.368"W 37°55'16.723"N Coleman's Island,

Hoskin's Creek tributary

to Rappahannock River

(distal tributary to

central estuarine zone)

Site C Potomac Creek

VA

77°20'7.619"W 38°21'6.972"N Potomac Creek tributary

to Potomac River

(central estuarine zone

5-15 ppt)
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During the past several decades, the National Oceanic and Atmospheric

Administration (NOAA, 2009) has maintained tidal gauging stations at Colonial Beach

and Washington DC (Table 1). The sea level rates calculated from the instrumental

records on the Potomac River range from 3.16-4.78 mm yr  from Washington DC and-1

Colonial Beach respectively (Table 2), which are significantly higher than eustatic

values of 1.0-1.5 mm yr (Table 2) (NOAA 2009; Boon 2012). The instrumental-1 

records from the lower Rappahannock at Sewell’s point record a relative sea-level rise

of 4.44 mm yr  spanning the past 84 years.-1

Cronin and others (2000, 2005, and 2010) and Cronin and Vann (2003) reported

microfossils from cores (~2-6 m in thickness) located at the mouths of the major

tributaries in the central regions of the bay (e.g., Patuxent, Choptank, and the Potomac

Rivers). Willard and others (2003) and Cronin and others (2003) reported a high-

resolution historical microfossil record that apparently discriminates important

anthropogenic events such as the Medieval Warm Period and deforestation of the bay

region with the arrival of European settlers.

METHODS

Marsh cores were collected from the Rappahannock and Potomac Rivers that

includes Blandfield Point (Site A), Tappahannock Harbor (Site B), and Potomac Creek

(Site C) (Table 1) (Fig. 1). A square-rod piston coring device was used to collect

continuous 1-meter long core drives down a single coring hole (Wright 1967).

Individual core sections were split along a longitudinal axis to produce two equal

halves. Potomac Creek cores were evaluated for microfossils at 10 cm intervals.

Approximately eighty 1cm sediment samples were soaked in a beaker of warm water3 

and mild detergent to disperse the clays (Scott and Leckie 1990). Samples were rinsed

over a 63 µm sieved and picked wet using conventional microfossil methods (Scott and

Medioli 1980). Each sample was then examined for foraminifera and relative

abundances were calculated for species and select genera to simplify the trends.

Exceptionally preserved specimens were examined on the scanning electron

microscope (SEM) for identification and illustration purposes.

TABLE 2. Tidal gauge data for the Chesapeake Bay (NOAA, 2009).

Locality Instrumental Records SL Rate

mm yr-1

YBP Tidal Station & Data Set Info

NOAA M onthly M ean

1 Washington DC 3.16+0.35 87 8594900 (1924-2006)

2 Colonial Beach VA 4.78+1.21 39 8635150 (1972-2003)

3 Sewells Point VA 4.44+0.27 84 8638610  (1927-2006)

4 Solomons Island M D 3..41+0.29 74 8577330 (1937-2006)

� Global average 1.5+0.5   0
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The total organic matter (TOM) was determined by using loss on ignition (LOI)

(Dean 1974). Grain size analyses were conducted using methods modified from

McManus (1988). Volume magnetic susceptibility was conducted on sediments using

a Bartington MS2E surface scanner following the method of split-core logging of Last

and Smol (2001). Select bulk sediment samples were pretreated for radiocarbon dating

at the University of Pittsburgh following the methods outlined by Abbott and Stafford

(1996). AMS C analyses were performed at the University of Arizona’s Accelerator14

Mass Spectrometry Laboratory and the dates calibrated using Calib 6.1.0 (Reimer and

others 2009).

RESULTS

Sedimentary Facies

Grey Clay Facies: The basal sediments at all coring sites comprise clay and sparse

interbeds of silt and sand (Fig. 2). The grey clay facies ranges in thickness from ~7.5-

4.25 m at Potomac Creek to ~5.5-2.5 at Tappahannock Harbor (Fig. 2). TOM values

in the organic-rich clay range from ~8-28%. Magnetic susceptibility values are

relatively low with positive excursion peaks in the silt-rich layers. Grain size analyses

at Tappahannock Harbor indicate a coarsening-up trend from mud-to-silt and fine sand

(Fig. 2). Foraminifera in the organic-rich grey clay are dominated by Trochammina

inflata, and Ammobaculites spp. in association with sparse Ammoastuta salsa and

Miliammina fusca. (Fig. 3).

Peat & Clay Facies: All cores contain an upper unit of alternating peat and grey

clay with TOM values that range from ~20% to 85% (Fig. 2). Magnetic susceptibility

values are relatively low with little variability. Microfossil populations in this facies are

dominated by Ammoastuta salsa and Miliammina fusca. Trochammina inflata and

Jadaminna macrescens are also common while Haplophragmoides is the least

abundant (Fig. 3). Sedimentary cores from Blandfield Marsh and Potomac Creek (Fig.

2) are capped with an uppermost rooted zone of the grass Phragmites and the

freshwater thecamoebian Arcellacea sp. (Figs. 2, 3). 

Core Chronology & Sedimentation Rates

Accelerator Mass Spectrometry (AMS) C dates obtained from Blandfield Point,14

Tappahannock Harbor, and Potomac Creek are listed in Table 3. Blandfield Point (Site

A) yielded a basal age of 3100 ±50 ybp. Tappahannock Harbor and Potomac Creek

yielded basal ages of 2658±43 and 2725±25 2430±25 ybp respectively. The uppermost

samples at Potomac Creek (Site C) and Tappahannock Harbor (Site B) were determined

to be post-bomb and are therefore excluded from our sediment accumulation rate

analysis. Rates of sedimentation were calculated using the cal BP C dates and the14

respective core depths (Fig. 4). Potomac Creek yielded the highest rates of 3.04-4.20

mm yr  for the past 2430±25 years. Both Blandfield Point and Tappahannock Harbor-1

yield sedimentation rates that were relatively consistent during the past several

thousand years (1.48-1.65 mm yr ) approaching those for estimates for late Holocene-1

sea-level rise (Table 3). Cs dates obtained in contiguous estuarine cores at Potomac137

Creek (Site C) and Blandfield Point (Site A) yielded sedimentation rates of 5.4 mm yr-1

and 4.5 mm yr  respectively (Tibert and others 2013).-1

Virginia Journal of Science, Vol. 63, No. 3, 2012 https://digitalcommons.odu.edu/vjs/vol63/iss3



96 VIRGINIA JOURNAL OF SCIENCE

F
IG

U
R

E
 2

. 
P

h
y

si
ca

l 
st

ra
ti

g
ra

p
h

y
 o

f 
th

e 
se

d
im

en
ta

ry
 c

o
re

s 
co

ll
ec

te
d

 f
ro

m
 t

h
e 

R
ap

p
a

h
an

n
o

ck
 R

iv
er

 (
S

it
e 

A

B
la

n
d

fi
el

d
 P

o
in

t;
 S

it
e 

B
 T

ap
p

ah
an

n
o

ck
 H

ar
b

o
r)

 a
n

d
 t

h
e 

P
o

to
m

ac
 R

iv
er

 (
S

it
e 

C
 P

o
to

m
ac

 C
re

ek
 V

A
).

 L
o

ca
li

ty

in
fo

rm
at

io
n

 i
s 

li
st

ed
 i

n
 T

ab
le

 1
. 

D
et

ai
ls

 o
n

 t
h

e 
A

M
S

 C
ar

b
o

n
 1

4
 r

ad
io

m
et

ri
c 

d
at

es
 a

re
 l

is
te

d
 i

n
 T

ab
le

 3
.

Virginia Journal of Science, Vol. 63, No. 3, 2012 https://digitalcommons.odu.edu/vjs/vol63/iss3



Late Holocene Sedimentation 97

FIGURE 3. Relative abundance plots for the foraminifera recovered from Site C at

Potomac Creek, VA.

TABLE 3. AMS  C dates and calculated rates of sedimentation for the14

Rappahannock and Potomac River marshes. Calibrations were performed using

Calib 6.1.0 (Reimer and others, 2009). 

Location Sample # Strat.

Hgt

(cm)

AM S C 1ó  cal. age14

 ranges

unc. 14C

Sed. Rate

mm yr-1

cal. C14

Sed. Rate

mm yr-1

Blandfield Point

VA

RA-07-C2-132

RA-07-C3-231

RA-07-C5-456

132

231

456

615+20

1750+20

3100+50

cal BP 557-648

cal BP 1623-1703

cal BP 3263-3377

2.15

1.32

1.47

2.19

1.39

1.37

Tappahannock

VA

RA-05-C1-0.37

RA-05-C@ -1.31

RA-05-C3-2.29

RA-05-C5-4.12

37

131

229

412

post-bomb

851+58

1529+41

2658+43

NA

cal BP 692-894

cal BP 1359-1511

cal BP 2743-2838

NA

1.54

1.50

1.55

NA

1.65

1.60

1.48

Potomac Creek

VA

PT-08-PC1

PT-08-PC1

PT-08-PC1

PT-08-PC1

50

263

747

762

post-bomb

890+20

1855+20

2430+25

NA

cal BP 744-897

cal BP 1737-1824

cal BP 2361-2648

NA

2.96

4.03

3.14

NA

3.21

4.20

3.04
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DISCUSSION

Paleoenvironmental Trends

Ellison and Nichols (1976) documented vertical zonation of foraminifera along a

transect extending from the lowest low water-to highest high water positions at nearby

Belle Isle on the Rappahannock River. Following this ecological model, we identify

three primary foraminiferal assemblages (Figs. 5, 6) that includes an upland

thecamoebian assemblage, a low-to high marsh Ammoastuta salsa and Miliammina

fusca assemblage, and an estuarine Ammobaculites spp. assemblage (e.g., Ellison

1972). The grey clay facies of the Potomac Creek core (Figs. 2, 3) records an initial

deep central estuarine environment with deposition of clay in association with the

Ammobaculites assemblage (Figs. 2, 3). The overlying peat and clay facies contain

abundant Ammoastuta salsa and Miliammina fusca that is consistent with peat

accumulation that was likely influenced by differential compaction due to autogenic

fluvial processes. The uppermost marsh deposits contain abundant macerated plant

detritus and in situ roots from the plant Phragmites. Foraminiferal abundances in the

uppermost sediments are low (no. < 10) and thecamoebians are relatively abundant

which records the recent development of an upland, freshwater marsh. Ellison and

Nichols (1976) also reported foraminiferal trends and radiocarbon results from nearby

Hunter Marsh on the Rappahannock River that indicates an approximate uncorrected

FIGURE 4. Sedimentation rates for the Potomac and Rappahannock marshes in

Virginia and Maryland. Tables 1 and 2 list the coring site details and the tide gage

station information (NOAA). Sites A-B from the Rappahannock River sedimentation

rates match closely late Holocene rates of sea-level rise until ~600 YBP; rates

increase sharply during the past several hundred years. Sedimentation rates at

Rappahannock Sites A-B differ from Potomac Creek Site C that suggests differential

compaction in the larger Potomac River catchment basin.
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C age of 5780 ybp at the base of the core (9.22 m). Their biotic synthesis was that the14

fossil populations of the foraminifera changed from domination of open bay (more

saline species) to less saline species (freshwater) up core. Considering this previous

study and the trends reported herein, we interpret the sedimentary bay-filling sequence

in the tidal reaches of the Northern Neck as a product of gradual and steady Holocene

sea-level rise with both regional and global processes impacting sedimentation rates as

discussed below.

FIGURE 5. Agglutinated foraminifera and thecamoebians from Potomac Creek,

Virginia (Site C). A-B. Arcellacea sp.; C-F. Ammoastuta salsa Cushman and

Brönniman; G. Ammobaculites crassus Warren; H-K. Ammobaculites dilatatus

Cushman and Brönnimann; L. Ammobaculites exiguus Cushman and Brönnimann.
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Late Holocene Compaction & Subsidence

The Chesapeake Bay region (Salisbury Embayment) is generally regarded as

tectonically stable sedimentary basin (Mixon and others 1989) and should therefore be

an ideal region to establish sea level baselines for global comparison. Microtidal

marshes like those in the Chesapeake Bay region are also thought to present the highest

potential for precise sea level predictions (Barlow and others 2013). Accurate

predictive models, however, must take into account the role of glacial isostatic

FIGURE 6. Agglutinated foraminifera from Potomac Creek, Virginia (Site C). A, I.

Haplophragmoides manilaensis Andersen; B, G. Jadammina macrescens Brady; C-F.

Miliammina fusca Brady; H. Haplophragmoides wilberti Andersen.
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adjustment (GIA) in response to northern hemisphere deglaciation, regional

compactional effects, and watershed specific sediment distribution patterns that

complicate sea level studies (Barlow and others in press).

Rates for Holocene relative sea level change in nearby coastal Delaware and New

Jersey may have been influenced significantly by GIA spanning the past 4000 years

(Engelhart and others, 2011). These studies indicate that rates of relative sea-level rise

for middle Atlantic marshes are on average higher (~1.7 yr ) than the baseline-1

Holocene rate (~1.5 mm yr ). Although our results from Potomac River for the past-1

~2500 ybp support this assertion (2.96-4.03 mm yr ), the significantly lower rates at-1

Rappahannock River (0.44-1.50 mm yr ) suggest that differential compaction due to-1

the natural fluvial process might have contributed to the variable, longer term

millennial rates of sedimentation in each basin. In this context of regional compaction,

Horton and Shennan (2009) estimated that compaction in United Kingdom coastal

marshes and estuaries may have contributed to as much 0.4-0.6 mm yr , especially in-1

the larger estuaries. The geographically large size of the Potomac River catchment

basin, therefore, may have supplied a higher volume of sediment and in due course a

higher rate of compaction due to sediment loading.

Late Holocene Climate Change

There is reasonable evidence to speculate that late Holocene temperature variability

contributed to the abrupt environmental shift from estuarine clay to marsh peat and clay

recorded in all cores between ~1500-800 ybp time interval. The Medieval Warm Period

(MWP) has been reported from the main axis of the Chesapeake Bay as a relatively

strong warmth signal that includes MWP I (1600-1100 ybp) and MWP II (1000-700

ybp) (Willard and others 2003; Cronin and others 2003, 2005, 2010). The marked

change in foraminiferal assemblages from estuarine (Ammobaculites spp.) to marsh

(Ammoastuta salsa) at Potomac Creek (Fig. 7) indicates a potential base level change

on the order a meter or more that superimposed the late Holocene record for the middle

Atlantic region (Engelhart and others 2011). The associated increased atmospheric

warmth and humidity during the MWP maxima potentially contributed to the

transgressive facies shift from grey clay to peat. With respect to 20th century climatic

variability, Cronin and others (2005, 2010) have documented decadal and centennial

intervals of extended warmth and humidity for the late 19th and 20th centuries that

exceed the Medieval Warm Period by as much as 2-3 C. In North Carolina, rates ofo

relative sea-level rise from marsh records indicate a 3.0-3.3 mm yr  sea-level rise that1

has been attributed to increased thermohaline expansion and/or mass loss from the

Greenland Ice Sheet due to rising global temperature (Kemp and others 2009). The

apparent freshening trends observed in the tidal reaches of the Potomac (Fig. 7) and

Rappahannock suggest that regional sedimentary processes forced by climate change 

are confounding foraminiferal sea level studies in the recent sedimentary record.

Post Colonial Landuse History

Instrumental tide-gauge records from the Potomac River at Washington DC

(upstream) and Colonial Beach (downstream) yield relative sea level values of

3.16±0.35 and 4.78±1.21 mm yr  respectively (NOAA 2009; Boon 2012) (Fig. 1, 5)-1

(Tables 1, 2). Most studies clearly show that the rates of sedimentation for the

Chesapeake Bay have increased significantly since initial European land clearance in
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1760 CE (Cooper and Brush 1991, 1993; Colman and Bratton 2003). During the past

400 years, humans have altered the watershed of the Chesapeake Bay, by clearing land

and creating impervious drainage surfaces that increase runoff, which ultimately

increases erosion. A high abundance of fresh water thecamoebians and low abundances

FIGURE 7. A simplified model to demonstrate the past ~2500 years of relative base

level change at Potomac Creek. The onset of peat accumulation was preceded by a brief

rapid rise in sea level that was broadly synchronous with the timing of Medieval Warm

Period climate events recorded in adjacent Chesapeake Bay cores (Cronin and others

2003, 2005, 2010).
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of foraminifera living in the modern marshes support this assertion. Consequently, the

higher sedimentation rates observed in the uppermost sediments of all cores are

attributed to increased erosion resulting from anthropogenic land use modification in

the Rappahannock and Potomac watersheds. Our results indicate that localized

sediment loading and regional compactional processes may have contributed to the

apparent rates of accelerated rates of sea-level rise for the middle Atlantic region during

the late 19th century (Kemp and others 2009, 2011; Tibert and others in press). The

anthropogenic loading combined with the predicted increased humidity due to global

warming combined with anomalous rate of sea-level rise could potentially exacerbate

the coastal erosion problem in the Virginia tidewater region.

CONCLUSIONS

Marsh cores from tidal reaches along the shores of the historic Northern Neck

region of Virginia record a complex sedimentation history for the past ~2500 years. We

highlight five major sedimentological and paleoenvironmental trends as follows:

1. Grey clay rich with estuarine foraminifera (Ammobaculites spp.) characterize

the basal facies in the marsh cores (~4-7 m);

2. Alternating peat and grey clay associated with marsh foraminifera

(Miliammina fusca and Ammoastuta salsa) characterize the upper intervals of

the cores (~1-4 m);

3. The uppermost rooted zones (~0.5 m) are dominated by freshwater grass

Phragmites and microfossil populations dominated by freshwater

thecamoebians;

4. The discordance in the ages observed at the base of the cores in the

Rappahannock River and Potomac River marshes indicates that autogenic

compactional processes have contributed to the variable rates of sedimentation

during the past ~2500 ybp;

5. The sharp increase in sedimentation rates and upward freshening

environmental trends at the top of the cores indicate that the combined

influences of anthropogenic land use modification and climate change have

contributed to high sediment volumes, increased freshwater influx and salt

marsh deterioration, and variable fluvial compaction in the proximal

tributaries of the Chesapeake Bay. 

The high rates of sedimentation and patterns of deposition in the Potomac and

Rappahannock region underscore the potential for significant coastal erosion and land

management problems with the threat of further sea-level rise in the decades to come.
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ABBREVIATED TAXONOMY

Ammoastuta salsa Cushman and Brönnimann 1948

Figure 5 C, D, E, F

Ammoastuta salsa (Cushman and Brönnimann) 1948, p.17, pl. 3. – ELLISON and

NICHOLS 1970, p. 15, pl. 2, fig. 3.

Remarks: Ammoastuta salsa has elongate chambers whereas the later formed chambers

increase in size progressively. Ammoastuta salsa has a distinct aperture consisting of

numerous perforated openings.

Ammobaculites crassus Warren 1957

Figure 5 G

Ammobaculites crassus WARREN 1957, p. 32, pl. 3, figs. 5,6,7. – ELLISON and

NICHOLS 1970, p. 15, pl. 2, fig. 4.

Remarks: Ammobaculites crassus has a large test with progressively increased inflation

of the chambers. The terminal aperture is large and circular.

Ammobaculites dilatatus Cushman and Brönnimann 1948

Figure 5 I, H, K

Ammobaculites dilatatus CUSHMAN and BRÖNNIMANN 1948, p.39, pl. 7, figs. 3,

4.

Ammobaculites cf. A. dilatatus Cushman and Brönnimann. – ELLISON and NICHOLS

1970, p. 15, pl. 2, fig. 5.

Remarks: Ammobaculites dilatatus has a compressed test with 2 or 3 chamber s in a

serial array. The final chamber is truncated in appearance a terminal aperture.

Ammobaculites exiguus Cushman and Brönnimann 1948

Figure 5 L

Ammobaculites exiguus CUSHMAN and BRÖNNIMANN 1948, p.38, pl. 7, figs. 7, 8.

Ammobaculites cf. A. exiguus Cushman and Brönnimann. – ELLISON and NICHOLS

1970, p. 15, pl. 2, fig. 6.

Remarks: Ammobaculites exiguus has a broad initial coil region that uncoils into a

parallel and even uniserial array. The chambers and sutures are relatively indistinct with

a terminal aperture that is small and circular. 
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Haplophragmoides manilaensis Andersen 1953

Figure 6 A, I

Haplophragmoides manilaensis ANDERSEN 1953, p. 22, pl. 4, fig. 8. – ELLISON and

NICHOLS 1970, p.16, pl. 1, fig. 6. – SCOTT AND OTHERS 1991, pp. 385, pl. 1, figs.

18, 19. 

Remarks: Haplophragmoides manilaensis has a small, deep umbilicus with inflated

chambers that increase in size with growth. Sutures are etched deeply, straight, and

protrude in a radial direction outward from the center. An elongate aperture is located

below a rim-like protrusion on the terminal chamber.

Haplophragmoides wilberti Andersen 1953

Figure 6 H

Haplophragmoides wilberti ANDERSEN 1953, p. 21, pl. 4, fig. 7. – ELLISON and

NICHOLS 1970, p.16, pl. 1, fig. 7.

Remarks: Haplophragmoides wilberti has slightly inflated chambers with tight,

planispiral coiling. Sutures are straight to slightly sigmoidal. 

Miliammina fusca (Brady 1870)

Figure 6 C, D, E, F

Quinqueloculina fusca BRADY 1870, p. 47, pl. 11, figs. 2, 3l

Miliammina fusca (Brady). SCOTT and others 1991, pp. 386, pl. 1, fig. 14. – ELLISON

and NICHOLS 1970, p.16, pl. 1, fig. 4. – SCOTT and MEDIOLI 1980, p. 40, pl. 2,

figs. 1-3.

Remarks: Miliammina fusca has elongate chambers that vary in size. The aperture is

located at the terminal end of the final chamber.

Trochammina inflata (Montagu 1808)

Nautilus inflata MONTAGU 1808, p. 81, pl. 18, fig. 3.

Trochammina inflata (Montagu) – SCOTT and others 1991, pp. 388, pl. 2, figs. 7, 8.

– ELLISON and NICHOLS 1970, p.16, pl. 1, figs. 8, 9. – SCOTT and MEDIOLI 1980,

p. 44, pl. 4, figs. 1-3. 

Remarks: Trochammina inflata is a relatively large and robust trochospiral taxon with

prominent inflation of the chambers.

Jadammina macrescens (Brady 1870)

Figure 6 B, G

Trochammina inflata (Montagu) var. macrescens BRADY 1870, p. 290, pl. 11, figs.

5a-c.
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Jadammina polystoma BARTENSTEIN and BRAND 1938, p. 381, figs. 1a-c, 2a-1. 

Trochammina macrescens Brady. – ELLISON and NICHOLS 1970, pp.14, pl. 1, figs.

10, 11. – SCOTT and MEDIOLI 1980a, p. 44, pl. 3, figs. 1-8. 

Jadammina macrescens Brady. – SCOTT and others 1991, pp. 388, pl. 2, figs. 10, 11. 

Remarks: Jadammina macrescens has a thin, trochospiral test with numerous pores in

the terminal aperture.
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