23 research outputs found

    Impact of intra- versus inter-annual snow depth variation on water relations and photosynthesis for two Great Basin Desert shrubs

    Full text link
    Snowfall provides the majority of soil water in certain ecosystems of North America. We tested the hypothesis that snow depth variation affects soil water content, which in turn drives water potential (Ψ) and photosynthesis, over 10 years for two widespread shrubs of the western USA. Stem Ψ (Ψ stem) and photosynthetic gas exchange [stomatal conductance to water vapor (g s), and CO2 assimilation (A)] were measured in mid-June each year from 2004 to 2013 for Artemisia tridentata var. vaseyana (Asteraceae) and Purshia tridentata (Rosaceae). Snow fences were used to create increased or decreased snow depth plots. Snow depth on +snow plots was about twice that of ambient plots in most years, and 20 % lower on -snow plots, consistent with several down-scaled climate model projections. Maximal soil water content at 40- and 100-cm depths was correlated with February snow depth. For both species, multivariate ANOVA (MANOVA) showed that Ψ stem, g s, and A were significantly affected by intra-annual variation in snow depth. Within years, MANOVA showed that only A was significantly affected by spatial snow depth treatments for A. tridentata, and Ψ stem was significantly affected by snow depth for P. tridentata. Results show that stem water relations and photosynthetic gas exchange for these two cold desert shrub species in mid-June were more affected by inter-annual variation in snow depth by comparison to within-year spatial variation in snow depth. The results highlight the potential importance of changes in inter-annual variation in snowfall for future shrub photosynthesis in the western Great Basin Desert

    Monitoring and understanding changes in extremes: Extratropical storms, winds, and waves

    No full text
    Weather and climate extremes profoundly affect society and the environment, resulting in the loss of life, property, and habitat. The extremes discussed herein are causally related: extratropical storms account for the majority of extreme winds during the cold season, and extreme waves are largely driven by extreme winds. For assessment purposes, extremes are defined based on meteorological principles rather than physical destructiveness. Nevertheless, each of these extremes can result in substantial societal impacts. Estimates of extratropical storm activity primarily derive from two sources: atmospheric reanalyses and pressure-based indices. Reanalysis products have the advantage of uniform space and time fields on which to locate pressure minima or vorticity maxima, facilitating the identification of storm tracks. In contrast, pressure-based indices have the advantage of being directly computed from in situ observations, which often extend further back in time than most reanalyses

    Correlation methods in fingerprint detection studies

    No full text
    This investigation addresses two general issues regarding the role of pattern similarity statistics in greenhouse warming detection studies: normalization, and the relative merits of centered versus uncentered statistics. A pattern correlation statistic is used to search for the greenhouse warming signals predicted by five different models in the observed records of land and ocean surface temperature changes. Two forms of this statistic were computed: R (t), which makes use of nonnormalized data, and {Mathematical expression} (t), which employs point-wise normalized data in order to focus the search on regions where the signal-to-noise ratio is large. While there are no trends in the R (t) time series, the time series of {Mathematical expression} (t) show large positive trends. However, it is not possible to infer from the {Mathematical expression} (t) results that the observed pattern of temperature change is, in fact, becoming increasingly similar to the model-predicted signal. This is because point-wise normalization of the observed and simulated mean change fields by a single common field introduces a "common factor" effect, which means that the quantities being compared should show some similarity a priori. This does not necessarily make normalization inapplicable, because the detection test involves seeking a trend in the similarity statistic. We show, however, that trends in {Mathematical expression} (t) must arise almost completely from the observed data, and cannot be an indicator of increasing observed data/signal similarity. We also compare the information provided by centered statistics such as R(t) and the uncentered C(t) statistic introduced by Barnett. We show that C(t) may be expressed as the weighted sum of two terms, one proportional to R(t) and the other proportional to the observed spatial mean. For near-surface temperatures, the spatial average term dominates over the R(t) term. In this case the use of C(t) is equivalent to the use of spatial-mean temperature. We conclude that at present, the most informative pattern correlation statistic for detection purposes is R(t), the standard product-moment correlation coefficient between the observed and model fields. Our failure to find meaningful trends in R(t) may be due to the fact that the signal is being obscured by the background noise of natural variability, and/or because of incorrect model signals or sensitivities
    corecore