189 research outputs found

    Influence of model assumptions about HIV disease progression after initiating or stopping treatment on estimates of infections and deaths averted by scaling up antiretroviral therapy

    No full text
    Background Many mathematical models have investigated the population-level impact of expanding antiretroviral therapy (ART), using different assumptions about HIV disease progression on ART and among ART dropouts. We evaluated the influence of these assumptions on model projections of the number of infections and deaths prevented by expanded ART. Methods A new dynamic model of HIV transmission among men who have sex with men (MSM) was developed, which incorporated each of four alternative assumptions about disease progression used in previous models: (A) ART slows disease progression; (B) ART halts disease progression; (C) ART reverses disease progression by increasing CD4 count; (D) ART reverses disease progression, but disease progresses rapidly once treatment is stopped. The model was independently calibrated to HIV prevalence and ART coverage data from the United States under each progression assumption in turn. New HIV infections and HIV-related deaths averted over 10 years were compared for fixed ART coverage increases. Results Little absolute difference (<7 percentage points (pp)) in HIV infections averted over 10 years was seen between progression assumptions for the same increases in ART coverage (varied between 33% and 90%) if ART dropouts reinitiated ART at the same rate as ART-naïve MSM. Larger differences in the predicted fraction of HIV-related deaths averted were observed (up to 15pp). However, if ART dropouts could only reinitiate ART at CD4<200 cells/μl, assumption C predicted substantially larger fractions of HIV infections and deaths averted than other assumptions (up to 20pp and 37pp larger, respectively). Conclusion Different disease progression assumptions on and post-ART interruption did not affect the fraction of HIV infections averted with expanded ART, unless ART dropouts only re-initiated ART at low CD4 counts. Different disease progression assumptions had a larger influence on the fraction of HIV-related deaths averted with expanded ART

    Population-Level Benefits from Providing Effective HIV Prevention Means to Pregnant Women in High Prevalence Settings

    Get PDF
    Background:HIV prevalence among pregnant women in Southern Africa is extremely high. Epidemiological studies suggest that pregnancy increases the risk of HIV sexual acquisition and that HIV infections acquired during pregnancy carry higher risk of mother-to-child transmission (MTCT). We analyze the potential benefits from extending the availability of effective microbicide to pregnant women (in addition to non-pregnant women) in a wide-scale intervention.Methods and Findings:A transmission dynamic model was designed to assess the impact of microbicide use in high HIV prevalence settings and to estimate proportions of new HIV infections, infections acquired during pregnancy, and MTCT prevented over 10 years. Our analysis suggests that consistent use of microbicide with 70% efficacy by 60% of non-pregnant women may prevent approximately 40% and 15% of new infections in women and men respectively over 10 years, assuming no additional increase in HIV risk to either partner during pregnancy (RRHIV/preg = 1). It may also prevent 8-15% MTCT depending on the increase in MTCT risk when HIV is acquired during pregnancy compared to before pregnancy (RRMTCT/preg). Extending the microbicides use during pregnancy may improve the effectiveness of the intervention by 10% (RRHIV/preg = 1) to 25% (RRHIV/preg = 2) and reduce the number of HIV infections acquired during pregnancy by 40% to 70% in different scenarios. It may add between 6% (RRHIV/preg = 1, RRMTCT/preg = 1) and 25% (RRHIV/preg = 2, RRMTCT/preg = 4) to the reduction in the residual MTCT.Conclusion:Providing safe and effective microbicide to pregnant women in the context of wide-scale interventions would be desirable as it would increase the effectiveness of the intervention and significantly reduce the number of HIV infections acquired during pregnancy. The projected benefits from covering pregnant women by the HIV prevention programs is more substantial in communities in which the sexual risk during pregnancy is elevated. © 2013 Dimitrov et al

    Predicted effectiveness of daily and non-daily PrEP for MSM based on sex and pill-taking patterns from HPTN 067/ADAPT

    Get PDF
    Background: HPTN 067/ADAPT evaluated the feasibility of daily and non-daily HIV pre-exposure prophylaxis (PrEP) regimens among high-risk populations, including men who have sex with men (MSM) and transgender women, in Bangkok, Thailand and Harlem, New York, U.S. We used a mathematical model to predict the efficacy and effectiveness of different dosing regimens. Methods: An individual-based mathematical model was used to simulate annual HIV incidence among MSM cohorts. PrEP efficacy for covered sex acts, as defined in the HPTN 067/ADAPT protocol, was estimated using subgroup efficacy estimates from the iPrEx trial. Effectiveness was estimated by comparison of the HIV incidence with and without PrEP use. Results: We estimated that PrEP was highly protective (85%–96% efficacy across regimens and sites) for fully covered acts. PrEP was more protective for partially covered acts in Bangkok (71%–88% efficacy) than in Harlem (62%–81% efficacy). Our model projects 80%, 62%, and 68% effectiveness of daily, time-driven, and event-driven PrEP for MSM in Harlem compared with 90%, 85% and 79% for MSM in Bangkok. Halving the efficacy for partially covered acts decreases effectiveness by 8–9 percentage points in Harlem and by 5–9 percentage points in Bangkok across regimens. Conclusions: Our analysis suggests that PrEP was more effective among MSM in Thailand than in the U.S. as a result of more fully covered sex acts and more pills taken around partially covered acts. Overall, non-daily PrEP was less effective than daily PrEP, especially in the U.S. where the sex act coverage associated with daily use was substantially higher

    Estimating the impact of HIV PrEP regimens containing long-acting injectable cabotegravir or daily oral tenofovir disoproxil fumarate/emtricitabine among men who have sex with men in the United States: a mathematical modelling study for HPTN 083

    Get PDF
    Background: The HPTN 083 trial demonstrated superiority of HIV pre-exposure prophylaxis (PrEP) containing long-acting injectable cabotegravir (CAB) to daily oral tenofovir disoproxil fumarate/emtricitabine (TDF/FTC) among men who have sex with men (MSM). We compared the potential population-level impact of TDF/FTC and CAB among MSM in Atlanta, Georgia. Methods: An MSM HIV transmission model was calibrated to Atlanta-specific data on HIV prevalence and PrEP usage (percentage of uninfected MSM on PrEP), assuming only PrEP-indicated MSM used PrEP. CAB effectiveness (efficacy × adherence) of 91% was estimated using data from HPTN 083 and previous TDF/FTC trials. We estimated HIV infections averted over 5/10 years if TDF/FTC use were maintained, or if all TDF/FTC users switched to CAB in January 2022 (vs. no PrEP or continued TDF/FTC use). CAB scenarios with 10%/20% more users were also considered. Progress towards Ending the HIV Epidemic (EHE) goals (75%/90% fewer HIV infections in 2025/2030 vs. 2017) was estimated. Findings: We predicted TDF/FTC at current usage (∼28%) would avert 36.3% of new HIV infections (95% credible interval 25.6–48.7%) among all Atlanta MSM over 2022–2026 vs. no PrEP. Switching to CAB with similar usage may prevent 44.6% (33.2–56.6%) infections vs. no PrEP and 11.9% (5.2–20.2%) infections vs. continued TDF/FTC. Increasing CAB usage 20% could increase the incremental impact over TDF/FTC to 30.0% over 2022–2026, getting ∼60% towards reaching EHE goals (47%/54% fewer infections in 2025/2030). Reaching the 2030 EHE goal would require 93% CAB usage. Interpretation: If CAB effectiveness were like HPTN 083, CAB could prevent more infections than TDF/FTC at similar usage. Increased CAB usage could contribute substantially towards reaching EHE goals, but the usage required to meet EHE goals is unrealistic

    Rectal Transmission of Transmitted/Founder HIV-1 Is Efficiently Prevented by Topical 1% Tenofovir in BLT Humanized Mice

    Get PDF
    Rectal microbicides are being developed to prevent new HIV infections in both men and women. We focused our in vivo preclinical efficacy study on rectally-applied tenofovir. BLT humanized mice (n = 43) were rectally inoculated with either the primary isolate HIV-1(JRCSF) or the MSM-derived transmitted/founder (T/F) virus HIV-1(THRO) within 30 minutes following treatment with topical 1% tenofovir or vehicle. Under our experimental conditions, in the absence of drug treatment we observed 50% and 60% rectal transmission by HIV-1(JRCSF) and HIV-1(THRO), respectively. Topical tenofovir reduced rectal transmission to 8% (1/12; log rank p = 0.03) for HIV-1(JRCSF) and 0% (0/6; log rank p = 0.02) for HIV-1(THRO). This is the first demonstration that any human T/F HIV-1 rectally infects humanized mice and that transmission of the T/F virus can be efficiently blocked by rectally applied 1% tenofovir. These results obtained in BLT mice, along with recent ex vivo, Phase 1 trial and non-human primate reports, provide a critically important step forward in the development of tenofovir-based rectal microbicides

    The role of sexually transmitted infections in male circumcision effectiveness against HIV – insights from clinical trial simulation

    Get PDF
    BACKGROUND: A landmark randomised trial of male circumcision (MC) in Orange Farm, South Africa recently showed a large and significant reduction in risk of HIV infection, reporting MC effectiveness of 61% (95% CI: 34%–77%). Additionally, two further randomised trials of MC in Kisumu, Kenya and Rakai, Uganda were recently stopped early to report 53% and 48% effectiveness, respectively. Since MC may protect against both HIV and certain sexually transmitted infections (STI), which are themselves cofactors of HIV infection, an important question is the extent to which this estimated effectiveness against HIV is mediated by the protective effect of circumcision against STI. The answer lies in the trial data if the appropriate statistical analyses can be identified to estimate the separate efficacies against HIV and STI, which combine to determine overall effectiveness. OBJECTIVES AND METHODS: Focusing on the MC trial in Kisumu, we used a stochastic prevention trial simulator (1) to determine whether statistical analyses can validly estimate efficacy, (2) to determine whether MC efficacy against STI alone can produce large effectiveness against HIV and (3) to estimate the fraction of all HIV infections prevented that are attributable to efficacy against STI when both efficacies combine. RESULTS: Valid estimation of separate efficacies against HIV and STI as well as MC effectiveness is feasible with available STI and HIV trial data, under Kisumu trial conditions. Under our parameter assumptions, high overall effectiveness of MC against HIV was observed only with a high MC efficacy against HIV and was not possible on the basis of MC efficacy against STI alone. The fraction of all HIV infections prevented which were attributable to MC efficacy against STI was small, except when efficacy of MC specifically against HIV was very low. In the three MC trials which reported between 48% and 61% effectiveness (combining STI and HIV efficacies), the fraction of HIV infections prevented in circumcised males which were attributable to STI was unlikely to be more than 10% to 20%. CONCLUSION: Estimation of efficacy, attributable fraction and effectiveness leads to improved understanding of trial results, gives trial results greater external validity and is essential to determine the broader public health impact of circumcision to men and women

    Fitting the HIV Epidemic in Zambia: A Two-Sex Micro-Simulation Model

    Get PDF
    BACKGROUND: In describing and understanding how the HIV epidemic spreads in African countries, previous studies have not taken into account the detailed periods at risk. This study is based on a micro-simulation model (individual-based) of the spread of the HIV epidemic in the population of Zambia, where women tend to marry early and where divorces are not frequent. The main target of the model was to fit the HIV seroprevalence profiles by age and sex observed at the Demographic and Health Survey conducted in 2001. METHODS AND FINDINGS: A two-sex micro-simulation model of HIV transmission was developed. Particular attention was paid to precise age-specific estimates of exposure to risk through the modelling of the formation and dissolution of relationships: marriage (stable union), casual partnership, and commercial sex. HIV transmission was exclusively heterosexual for adults or vertical (mother-to-child) for children. Three stages of HIV infection were taken into account. All parameters were derived from empirical population-based data. Results show that basic parameters could not explain the dynamics of the HIV epidemic in Zambia. In order to fit the age and sex patterns, several assumptions were made: differential susceptibility of young women to HIV infection, differential susceptibility or larger number of encounters for male clients of commercial sex workers, and higher transmission rate. The model allowed to quantify the role of each type of relationship in HIV transmission, the proportion of infections occurring at each stage of disease progression, and the net reproduction rate of the epidemic (R(0) = 1.95). CONCLUSIONS: The simulation model reproduced the dynamics of the HIV epidemic in Zambia, and fitted the age and sex pattern of HIV seroprevalence in 2001. The same model could be used to measure the effect of changing behaviour in the future
    corecore