3,213 research outputs found
Anticipated Synchronization in a Biologically Plausible Model of Neuronal Motifs
Two identical autonomous dynamical systems coupled in a master-slave
configuration can exhibit anticipated synchronization (AS) if the slave also
receives a delayed negative self-feedback. Recently, AS was shown to occur in
systems of simplified neuron models, requiring the coupling of the neuronal
membrane potential with its delayed value. However, this coupling has no
obvious biological correlate. Here we propose a canonical neuronal microcircuit
with standard chemical synapses, where the delayed inhibition is provided by an
interneuron. In this biologically plausible scenario, a smooth transition from
delayed synchronization (DS) to AS typically occurs when the inhibitory
synaptic conductance is increased. The phenomenon is shown to be robust when
model parameters are varied within physiological range. Since the DS-AS
transition amounts to an inversion in the timing of the pre- and post-synaptic
spikes, our results could have a bearing on spike-timing-dependent-plasticity
models
A New Window on Primordial non-Gaussianity
We know very little about primordial curvature perturbations on scales
smaller than about a Mpc. Measurements of the mu-type distortion of the CMB
spectrum provide the unique opportunity to probe these scales over the
unexplored range from 50 to 10^4 Mpc^-1. This is a very clean probe, in that it
relies only on well-understood linear evolution. We point out that correlations
between mu-distortion and temperature anisotropies can be used to test
Gaussianity at these very small scales. In particular the mu-T cross
correlation is proportional to the very squeezed limit of the primordial
bispectrum and hence measures fNL^loc, while mu-mu is proportional to the
primordial trispectrum and measures tauNL. We present a Fisher matrix forecast
of the observational constraints.Comment: 5 pages, one figure. v2: added clarifying comments and references,
fixed typo
Temperature independent band structure of WTe2 as observed from ARPES
Extremely large magnetoresistance (XMR), observed in transition metal
dichalcogendies, WTe, has attracted recently a great deal of research
interests as it shows no sign of saturation up to the magnetic field as high as
60 T, in addition to the presence of type-II Weyl fermions. Currently, there
has been a lot of discussion on the role of band structure changes on the
temperature dependent XMR in this compound. In this contribution, we study the
band structure of WTe using angle-resolved photoemission spectroscopy
(ARPES) and first-principle calculations to demonstrate that the temperature
dependent band structure has no substantial effect on the temperature dependent
XMR as our measurements do not show band structure changes on increasing the
sample temperature between 20 and 130 K. We further observe an electronlike
surface state, dispersing in such a way that it connects the top of bulk
holelike band to the bottom of bulk electronlike band. Interestingly, similar
to bulk states, the surface state is also mostly intact with the sample
temperature. Our results provide invaluable information in shaping the
mechanism of temperature dependent XMR in WTe.Comment: 7 pages, 3 figures. arXiv admin note: text overlap with
arXiv:1705.0721
A screening mechanism for extra W and Z gauge bosons
We generalize a previous construction of a fermiophobic model to the case of
more than one extra and gauge bosons. We focus in particular on the
existence of screening configurations and their implication on the gauge boson
mass spectrum. One of these configurations allows for the existence of a set of
relatively light new gauge bosons, without violation of the quite restrictive
bounds coming from the parameter. The links with Bess and
degenerate Bess models are also discussed. Also the signal given here by this
more traditional gauge extension of the SM could help to disentangle it from
the towers of Kaluza-Klein states over and gauge bosons in extra
dimensions.Comment: 23 pages, 1 figure, extended discussion on precision tests. To appear
in International Journal of Modern Physics
New Perspective on Galaxy Clustering as a Cosmological Probe: General Relativistic Effects
We present a general relativistic description of galaxy clustering in a FLRW
universe. The observed redshift and position of galaxies are affected by the
matter fluctuations and the gravity waves between the source galaxies and the
observer, and the volume element constructed by using the observables differs
from the physical volume occupied by the observed galaxies. Therefore, the
observed galaxy fluctuation field contains additional contributions arising
from the distortion in observable quantities and these include tensor
contributions as well as numerous scalar contributions. We generalize the
linear bias approximation to relate the observed galaxy fluctuation field to
the underlying matter distribution in a gauge-invariant way. Our full formalism
is essential for the consistency of theoretical predictions. As our first
application, we compute the angular auto correlation of large-scale structure
and its cross correlation with CMB temperature anisotropies. We comment on the
possibility of detecting primordial gravity waves using galaxy clustering and
discuss further applications of our formalism.Comment: 10 pages, 2 figures, accepted for publication in Physical Review
- …