17,342 research outputs found
Group Importance Sampling for Particle Filtering and MCMC
Bayesian methods and their implementations by means of sophisticated Monte
Carlo techniques have become very popular in signal processing over the last
years. Importance Sampling (IS) is a well-known Monte Carlo technique that
approximates integrals involving a posterior distribution by means of weighted
samples. In this work, we study the assignation of a single weighted sample
which compresses the information contained in a population of weighted samples.
Part of the theory that we present as Group Importance Sampling (GIS) has been
employed implicitly in different works in the literature. The provided analysis
yields several theoretical and practical consequences. For instance, we discuss
the application of GIS into the Sequential Importance Resampling framework and
show that Independent Multiple Try Metropolis schemes can be interpreted as a
standard Metropolis-Hastings algorithm, following the GIS approach. We also
introduce two novel Markov Chain Monte Carlo (MCMC) techniques based on GIS.
The first one, named Group Metropolis Sampling method, produces a Markov chain
of sets of weighted samples. All these sets are then employed for obtaining a
unique global estimator. The second one is the Distributed Particle
Metropolis-Hastings technique, where different parallel particle filters are
jointly used to drive an MCMC algorithm. Different resampled trajectories are
compared and then tested with a proper acceptance probability. The novel
schemes are tested in different numerical experiments such as learning the
hyperparameters of Gaussian Processes, two localization problems in a wireless
sensor network (with synthetic and real data) and the tracking of vegetation
parameters given satellite observations, where they are compared with several
benchmark Monte Carlo techniques. Three illustrative Matlab demos are also
provided.Comment: To appear in Digital Signal Processing. Related Matlab demos are
provided at https://github.com/lukafree/GIS.gi
Rotor burst protection program initial test results, phase 4 Final report
High speed photographic recording of turbine wheel failure in containment devic
On the strategy frequency problem in batch Minority Games
Ergodic stationary states of Minority Games with S strategies per agent can
be characterised in terms of the asymptotic probabilities with which
an agent uses of his strategies. We propose here a simple and general
method to calculate these quantities in batch canonical and grand-canonical
models. Known analytic theories are easily recovered as limiting cases and, as
a further application, the strategy frequency problem for the batch
grand-canonical Minority Game with S=2 is solved. The generalization of these
ideas to multi-asset models is also presented. Though similarly based on
response function techniques, our approach is alternative to the one recently
employed by Shayeghi and Coolen for canonical batch Minority Games with
arbitrary number of strategies.Comment: 17 page
Diffusion Processes and Coherent States
It is shown that stochastic processes of diffusion type possess, in all
generality, a structure of uncertainty relations and of coherent and squeezed
states. This fact is used to obtain, via Nelson stochastic formulation of
quantum mechanics, the harmonic-oscillator coherent and squeezed states. The
method allows to derive new minimum uncertainty states in time-dependent
oscillator potentials and for the Caldirola-Kanai model of quantum damped
oscillator.Comment: 11 pages, plain LaTe
Quantum Groups, Coherent States, Squeezing and Lattice Quantum Mechanics
By resorting to the Fock--Bargmann representation, we incorporate the quantum
Weyl--Heisenberg (-WH) algebra into the theory of entire analytic functions.
The main tool is the realization of the --WH algebra in terms of finite
difference operators. The physical relevance of our study relies on the fact
that coherent states (CS) are indeed formulated in the space of entire analytic
functions where they can be rigorously expressed in terms of theta functions on
the von Neumann lattice. The r\^ole played by the finite difference operators
and the relevance of the lattice structure in the completeness of the CS system
suggest that the --deformation of the WH algebra is an essential tool in the
physics of discretized (periodic) systems. In this latter context we define a
quantum mechanics formalism for lattice systems.Comment: 22 pages, TEX file, DFF188/9/93 Firenz
- …