6,353 research outputs found
On the Stability of Black Holes at the LHC
The eventual production of mini black holes by proton-proton collisions at
the LHC is predicted by theories with large extra dimensions resolvable at the
Tev scale of energies. It is expected that these black holes evaporate shortly
after its production as a consequence of the Hawking radiation. We show that
for theories based on the ADS/CFT correspondence, the produced black holes may
have an unstable horizon, which grows proportionally to the square of the
distance to the collision point.Comment: 3 page
An alternative theoretical approach to describe planetary systems through a Schrodinger-type diffusion equation
In the present work we show that planetary mean distances can be calculated
with the help of a Schrodinger-type diffusion equation. The obtained results
are shown to agree with the observed orbits of all the planets and of the
asteroid belt in the solar system, with only three empty states. Furthermore,
the equation solutions predict a fundamental orbit at 0.05 AU from solar-type
stars, a result confirmed by recent discoveries. In contrast to other similar
approaches previously presented in the literature, we take into account the
flatness of the solar system, by considering the flat solutions of the
Schrodinger-type equation. The model has just one input parameter, given by the
mean distance of Mercury.Comment: 6 pages. Version accepted for publication in Chaos, Solitons &
Fractal
Parabolic dunes in north-eastern Brazil
In this work we present measurements of vegetation cover over parabolic dunes
with different degree of activation along the north-eastern Brazilian coast. We
are able to extend the local values of the vegetation cover density to the
whole dune by correlating measurements with the gray-scale levels of a high
resolution satellite image of the dune field. The empirical vegetation
distribution is finally used to validate the results of a recent continuous
model of dune motion coupling sand erosion and vegetation growth.Comment: 18 pages, 14 figures, aubmitted to Geomorpholog
The Solar Twin Planet Search II. A Jupiter twin around a solar twin
Through our HARPS radial velocity survey for planets around solar twin stars,
we have identified a promising Jupiter twin candidate around the star HIP11915.
We characterize this Keplerian signal and investigate its potential origins in
stellar activity. Our analysis indicates that HIP11915 hosts a Jupiter-mass
planet with a 3800-day orbital period and low eccentricity. Although we cannot
definitively rule out an activity cycle interpretation, we find that a planet
interpretation is more likely based on a joint analysis of RV and activity
index data. The challenges of long-period radial velocity signals addressed in
this paper are critical for the ongoing discovery of Jupiter-like exoplanets.
If planetary in nature, the signal investigated here represents a very close
analog to the solar system in terms of both Sun-like host star and Jupiter-like
planet.Comment: 8 pages, 5 figures; A&A accepted; typos corrected in this versio
Utilização da luz ultravioleta (UV-C) na proteção de maçãs fuji da podridão por Penicillium expansum.
bitstream/item/59949/1/CNPUV-BOL.-PESQ.-10-01.pd
Energy density and pressure of long wavelength gravitational waves
Inflation leads us to expect a spectrum of gravitational waves (tensor
perturbations) extending to wavelengths much bigger than the present observable
horizon. Although these gravity waves are not directly observable, the energy
density that they contribute grows in importance during the radiation- and
dust-dominated ages of the universe. We show that the back reaction of tensor
perturbations during matter domination is limited from above, since
gravitational waves of wavelength have a share of the total energy
density during matter domination that is at most
equal to the share of the total energy density that they had when the mode
exited the Hubble radius during inflation. This work is to
be contrasted to that of Sahni, who analyzed the energy density of gravity
waves only insofar as their wavelengths are smaller than . Such a
cut-off in the spectral energy of gravity waves leads to the breakdown of
energy conservation, and we show that this anomaly is eliminated simply by
taking into account the energy density and pressure of long wavelength
gravitational waves as well as short wavelength ones.Comment: Updated one reference; 17 pages, no figure
- …