99 research outputs found

    Grade Retention: A History of Failure

    Get PDF
    Although almost 50 years of research has shown that grade-level retention affords no academic advantages to students, this practice is gaining increasing attention as schools face political pressure to be accountable for student achievement. The negative effect that retention has on children is ignored in favor of an overly simplistic view of it as a panacea for education woes. In an attempt to better meet student needs, educators historically have seen retention as a way to reduce skill variance in the classroom. However, this practice has not achieved its objective. An at-risk population is cognitively and affectively harmed by retention. Educators need to stop punishing nonlearners and instead provide opportunities for success if they are to treat their students professionally. Alternatives that should be considered include offering intensive remediation before and after school, requiring summer school, increasing teacher expectations, and changing teacher and administrative perceptions

    Pre-service teachers\u27 preparedness to integrate computer technology into the curriculum

    Get PDF
    For Canada to compete effectively in the digital world, beginning teachers need to play an important role in integrating computer technology into the curriculum. Equipment and connectivity do not guarantee successful or productive use of computers in the classroom, but the combination of the teaching style and technology use has the potential to change education. In this research, the computer self-efficacy beliefs of 210 preservice teachers after their first practice teaching placements were examined. First, the quantitative component of the study involved the use of Computer User Self-Efficacy (CUSE) scale where students’ previous undergraduate degree, licensure area, experience and familiarity with software packages were found to have statistically significant effects on computer self-efficacy. Second, the qualitative data indicated that society and school were the most positive factors that influenced preservice teachers’ attitudes towards computers, while the family had the highest percentage of negative influence. Findings reveal that although preservice teachers had completed only two months of the program, those with higher CUSE scores were more ready to integrate computers into their lessons than those with lower scores

    Compatibility of radial, Lorenz and harmonic gauges

    Full text link
    We observe that the radial gauge can be consistently imposed \emph{together} with the Lorenz gauge in Maxwell theory, and with the harmonic traceless gauge in linearized general relativity. This simple observation has relevance for some recent developments in quantum gravity where the radial gauge is implicitly utilized.Comment: 9 pages, minor changes in the bibliograph

    A Smart Region-Growing Algorithm for Single-Neuron Segmentation From Confocal and 2-Photon Datasets

    Get PDF
    Accurately digitizing the brain at the micro-scale is crucial for investigating brain structure-function relationships and documenting morphological alterations due to neuropathies. Here we present a new Smart Region Growing algorithm (SmRG) for the segmentation of single neurons in their intricate 3D arrangement within the brain. Its Region Growing procedure is based on a homogeneity predicate determined by describing the pixel intensity statistics of confocal acquisitions with a mixture model, enabling an accurate reconstruction of complex 3D cellular structures from high-resolution images of neural tissue. The algorithm’s outcome is a 3D matrix of logical values identifying the voxels belonging to the segmented structure, thus providing additional useful volumetric information on neurons. To highlight the algorithm’s full potential, we compared its performance in terms of accuracy, reproducibility, precision and robustness of 3D neuron reconstructions based on microscopic data from different brain locations and imaging protocols against both manual and state-of-the-art reconstruction tools

    Many-nodes/many-links spinfoam: the homogeneous and isotropic case

    Full text link
    I compute the Lorentzian EPRL/FK/KKL spinfoam vertex amplitude for regular graphs, with an arbitrary number of links and nodes, and coherent states peaked on a homogeneous and isotropic geometry. This form of the amplitude can be applied for example to a dipole with an arbitrary number of links or to the 4-simplex given by the compete graph on 5 nodes. All the resulting amplitudes have the same support, independently of the graph used, in the large j (large volume) limit. This implies that they all yield the Friedmann equation: I show this in the presence of the cosmological constant. This result indicates that in the semiclassical limit quantum corrections in spinfoam cosmology do not come from just refining the graph, but rather from relaxing the large j limit.Comment: 8 pages, 4 figure

    Asymptotics of LQG fusion coefficients

    Full text link
    The fusion coefficients from SO(3) to SO(4) play a key role in the definition of spin foam models for the dynamics in Loop Quantum Gravity. In this paper we give a simple analytic formula of the EPRL fusion coefficients. We study the large spin asymptotics and show that they map SO(3) semiclassical intertwiners into SU(2)L×SU(2)RSU(2)_L\times SU(2)_R semiclassical intertwiners. This non-trivial property opens the possibility for an analysis of the semiclassical behavior of the model.Comment: 14 pages, minor change

    Advanced 3D Models of Human Brain Tissue Using Neural Cell Lines: State-of-the-Art and Future Prospects

    Get PDF
    Human-relevant three-dimensional (3D) models of cerebral tissue can be invaluable tools to boost our understanding of the cellular mechanisms underlying brain pathophysiology. Nowadays, the accessibility, isolation and harvesting of human neural cells represents a bottleneck for obtaining reproducible and accurate models and gaining insights in the fields of oncology, neurodegenerative diseases and toxicology. In this scenario, given their low cost, ease of culture and reproducibility, neural cell lines constitute a key tool for developing usable and reliable models of the human brain. Here, we review the most recent advances in 3D constructs laden with neural cell lines, highlighting their advantages and limitations and their possible future applications

    Gotta trace ‘em all: A mini-review on tools and procedures for segmenting single neurons toward deciphering the structural connectome

    Get PDF
    Decoding the morphology and physical connections of all the neurons populating a brain is necessary for predicting and studying the relationships between its form and function, as well as for documenting structural abnormalities in neuropathies. Digitizing a complete and high-fidelity map of the mammalian brain at the micro-scale will allow neuroscientists to understand disease, consciousness, and ultimately what it is that makes us humans. The critical obstacle for reaching this goal is the lack of robust and accurate tools able to deal with 3D datasets representing dense-packed cells in their native arrangement within the brain. This obliges neuroscientist to manually identify the neurons populating an acquired digital image stack, a notably time-consuming procedure prone to human bias. Here we review the automatic and semi-automatic algorithms and software for neuron segmentation available in the literature, as well as the metrics purposely designed for their validation, highlighting their strengths and limitations. In this direction, we also briefly introduce the recent advances in tissue clarification that enable significant improvements in both optical access of neural tissue and image stack quality, and which could enable more efficient segmentation approaches. Finally, we discuss new methods and tools for processing tissues and acquiring images at sub-cellular scales, which will require new robust algorithms for identifying neurons and their sub-structures (e.g., spines, thin neurites). This will lead to a more detailed structural map of the brain, taking twenty-first century cellular neuroscience to the next level, i.e., the Structural Connectome

    The kernel and the injectivity of the EPRL map

    Full text link
    In this paper we prove injectivity of the EPRL map for |\gamma|<1, filling the gap of our previous paper.Comment: 17 pages, 3 figure

    Intertwiner dynamics in the flipped vertex

    Full text link
    We continue the semiclassical analysis, started in a previous paper, of the intertwiner sector of the flipped vertex spinfoam model. We use independently both a semi-analytical and a purely numerical approach, finding the correct behavior of wave packet propagation and physical expectation values. In the end, we show preliminary results about correlation functions.Comment: 12 pages, 7 figure
    • …
    corecore