2,358 research outputs found

    Transport in the Heavy Fermion Superconductor UPt3

    Full text link
    We report new theoretical results and analysis for the transport properties of superconducting UPt3 based on the leading models for the pairing symmetry. We use Fermi surface data and the measured inelastic scattering rate to show that the low-temperature thermal conductivity and transverse sound attenuation in the A and B phase of UPt3 are in excellent agreement with pairing states belonging to the two-dimensional orbital E2u representation.Comment: 2 pages, contribution at Int. Conf. LT-22, Helsinki, Finland, 4-11 Aug. 199

    Leaching of a Cu-Co ore from Congo using sulphuric acidhydrogen peroxide leachants

    Get PDF
    A Cu-Co ore from Katinga Province, the Republic of Congo containing 1.5% Co and 1.6% Cu was tested to determine the leachability of Cu and Co using sulphuric acid and hydrogen peroxide mixtures at different conditions. Without hydrogen peroxide, the maximum extraction of copper and cobalt were found to be ~80% and ~15%, respectively when the acid concentration was varied between 0.36 - 1.1M. When hydrogen peroxide was added (0.008-0.042M), Cu recovery was enhanced to ~90%. Recoveries of ~90% of Co could be achieved at 20ÂșC, using leachants consisting of 0.36M sulphuric acid and 0.025M hydrogen peroxide after 3 hours. The reaction time to reach 90% Co extraction was reduced to less than 2 hours at 30ÂșC. Stabcal modelling of the Eh-pH diagrams shows the importance of hydrogen peroxide as a reductant. The decrease of solution potential (300-350 mV) by adding hydrogen peroxide was confirmed by Eh measurements during the tests. The leaching follows the shrinking core model kinetics, where the rate constant is linearly dependent on hydrogen peroxide concentration in the range 0-0.025M and proportional to (1/r2) where r is the average radius of the mineral particles. The activation energy for the leaching process is 72.3 kJ/mol

    Antiferromagnetic Domains and Superconductivity in UPt3

    Full text link
    We explore the response of an unconventional superconductor to spatially inhomogeneous antiferromagnetism (SIAFM). Symmetry allows the superconducting order parameter in the E-representation models for UPt3 to couple directly to the AFM order parameter. The Ginzburg-Landau equations for coupled superconductivity and SIAFM are solved numerically for two possible SIAFM configurations: (I) abutting antiferromagnetic domains of uniform size, and (II) quenched random disorder of `nanodomains' in a uniform AFM background. We discuss the contributions to the free energy, specific heat, and order parameter for these models. Neither model provides a satisfactory account of experiment, but results from the two models differ significantly. Our results demonstrate that the response of an E_{2u} superconductor to SIAFM is strongly dependent on the spatial dependence of AFM order; no conclusion can be drawn regarding the compatibility of E_{2u} superconductivity with UPt3 that is independent of assumptions on the spatial dependence of AFMComment: 12 pages, 13 figures, to appear in Phys. Rev.

    Sums of hermitian squares and the BMV conjecture

    Full text link
    Recently Lieb and Seiringer showed that the Bessis-Moussa-Villani conjecture from quantum physics can be restated in the following purely algebraic way: The sum of all words in two positive semidefinite matrices where the number of each of the two letters is fixed is always a matrix with nonnegative trace. We show that this statement holds if the words are of length at most 13. This has previously been known only up to length 7. In our proof, we establish a connection to sums of hermitian squares of polynomials in noncommuting variables and to semidefinite programming. As a by-product we obtain an example of a real polynomial in two noncommuting variables having nonnegative trace on all symmetric matrices of the same size, yet not being a sum of hermitian squares and commutators.Comment: 21 pages; minor changes; a companion Mathematica notebook is now available in the source fil

    Pharmacological And Genetic Reversal Of Age-Dependent Cognitive Deficits Attributable To Decreased Presenilin Function

    Get PDF
    Alzheimer\u27s disease (AD) is the leading cause of cognitive loss and neurodegeneration in the developed world. Although its genetic and environmental causes are not generally known, familial forms of the disease (FAD) are attributable to mutations in a single copy of the Presenilin (PS) and amyloid precursor protein genes. The dominant inheritance pattern of FAD indicates that it may be attributable to gain or change of function mutations. Studies of FAD-linked forms of presenilin (psn) in model organisms, however, indicate that they are loss of function, leading to the possibility that a reduction in PS activity might contribute to FAD and that proper psn levels are important for maintaining normal cognition throughout life. To explore this issue further, we have tested the effect of reducing psn activity during aging in Drosophila melanogaster males. We have found that flies in which the dosage of psn function is reduced by 50% display age-onset impairments in learning and memory. Treatment with metabotropic glutamate receptor (mGluR) antagonists or lithium during the aging process prevented the onset of these deficits, and treatment of aged flies reversed the age-dependent deficits. Genetic reduction of Drosophila metabotropic glutamate receptor (DmGluRA), the inositol trisphosphate receptor (InsP(3)R), or inositol polyphosphate 1-phosphatase also prevented these age-onset cognitive deficits. These findings suggest that reduced psn activity may contribute to the age-onset cognitive loss observed with FAD. They also indicate that enhanced mGluR signaling and calcium release regulated by InsP(3)R as underlying causes of the age-dependent cognitive phenotypes observed when psn activity is reduced

    Time and Amplitude of Afterpulse Measured with a Large Size Photomultiplier Tube

    Full text link
    We have studied the afterpulse of a hemispherical photomultiplier tube for an upcoming reactor neutrino experiment. The timing, the amplitude, and the rate of the afterpulse for a 10 inch photomultiplier tube were measured with a 400 MHz FADC up to 16 \ms time window after the initial signal generated by an LED light pulse. The time and amplitude correlation of the afterpulse shows several distinctive groups. We describe the dependencies of the afterpulse on the applied high voltage and the amplitude of the main light pulse. The present data could shed light upon the general mechanism of the afterpulse.Comment: 11 figure

    Thermoelectric power of MgB2−x_{2-x}Bex_x

    Full text link
    We investigated thermoelectric power S(T)S(T) of MgB2−x_{2-x}Bex_{x} (x=0x=0, 0.2, 0.3, 0.4, and 0.6). S(T)S(T) decreases systematically with xx, suggesting that the hole density increases. Our band calculation shows that the increase occurs in the σ\sigma -band. With the hole-doping, TcT_{c} decreases. Implication of this phenomenon is discussed within the BCS framework. While the Mott formula explains only the linear part of S(T)S(T) at low temperature, incorporation of electron-phonon interaction enables us to explain S(T)S(T) over wide temperature range including the anomalous behavior at high temperature.Comment: 4 pages, 4 figure

    Electronic structure, local magnetism, and spin-orbit effects of Ir(IV)-, Ir(V)-, and Ir(VI)-based compounds

    Get PDF
    Element- and orbital-selective x-ray absorption and magnetic circular dichroism measurements are carried out to probe the electronic structure and magnetism of Ir 5d electronic states in double perovskite Sr2MIrO6 (M=Mg, Ca, Sc, Ti, Ni, Fe, Zn, In) and La2NiIrO6 compounds. All the studied systems present a significant influence of spin-orbit interactions in the electronic ground state. In addition, we find that the Ir 5d local magnetic moment shows different character depending on the oxidation state despite the net magnetization being similar for all the compounds. Ir carries an orbital contribution comparable to the spin contribution for Ir4+ (5d5) and Ir5+ (5d4) oxides, whereas the orbital contribution is quenched for Ir6+ (5d3) samples. Incorporation of a magnetic 3d atom allows getting insight into the magnetic coupling between 5d and 3d transition metals. Together with previous susceptibility and neutron diffraction measurements, the results indicate that Ir carries a significant local magnetic moment even in samples without a 3d metal. The size of the (small) net magnetization of these compounds is a result of predominant antiferromagnetic interactions between local moments coupled with structural details of each perovskite structure

    Neutron beam test of CsI crystal for dark matter search

    Full text link
    We have studied the response of Tl-doped and Na-doped CsI crystals to nuclear recoils and Îł\gamma's below 10 keV. The response of CsI crystals to nuclear recoil was studied with mono-energetic neutrons produced by the 3^3H(p,n)3^3He reaction. This was compared to the response to Compton electrons scattered by 662 keV Îł\gamma-ray. Pulse shape discrimination between the response to these Îł\gamma's and nuclear recoils was studied, and quality factors were estimated. The quenching factors for nuclear recoils were derived for both CsI(Na) and CsI(Tl) crystals.Comment: 21pages, 14figures, submitted to NIM
    • 

    corecore