24 research outputs found

    Battling water limits to growth:lessons from water trends in the central plateau of Iran

    No full text
    Abstract The Zayandeh-Rud River Basin in the central plateau of Iran continues to grapple with water shortages due to a water-intensive development path made possible by a primarily supply-oriented water management approach to battle the water limits to growth. Despite inter-basin water transfers and increasing groundwater supply, recurring water shortages and associated tensions among stakeholders underscore key weaknesses in the current water management paradigm. There was an alarming trend of groundwater depletion in the basin’s four main aquifers in the 1993–2016 period as indicated by the results of the Mann-Kendall3 (MK3) test and Innovative Trend Analysis (ITA) of groundwater volume. The basin’s water resources declined by more than 6 BCM in 2016 compared to 2005 based on the equivalent water height (EWH) derived from monthly data (2002–2016) from the GRACE. The extensive groundwater depletion is an unequivocal evidence of reduced water availability in the face of growing basin-wide demand, necessitating water saving in all water use sectors. Implementing an integrated water resources management plan that accounts for evolving water supply priorities, growing demand and scarcity, and institutional changes is an urgent step to alleviate the growing tensions and preempt future water insecurity problems that are bound to occur if demand management approaches are delayed

    Anthropogenic depletion of Iran’s aquifers

    No full text
    Abstract Global groundwater assessments rank Iran among countries with the highest groundwater depletion rate using coarse spatial scales that hinder detection of regional imbalances between renewable groundwater supply and human withdrawals. Herein, we use in situ data from 12,230 piezometers, 14,856 observation wells, and groundwater extraction points to provide ground-based evidence about Iran’s widespread groundwater depletion and salinity problems. While the number of groundwater extraction points increased by 84.9% from 546,000 in 2002 to over a million in 2015, the annual groundwater withdrawal decreased by 18% (from 74.6 to 61.3 km³/y) primarily due to physical limits to fresh groundwater resources (i.e., depletion and/or salinization). On average, withdrawing 5.4 km³/y of nonrenewable water caused groundwater tables to decline 10 to 100 cm/y in different regions, averaging 49 cm/y across the country. This caused elevated annual average electrical conductivity (EC) of groundwater in vast arid/semiarid areas of central and eastern Iran (16 out of 30 subbasins), indicating “very high salinity hazard” for irrigation water. The annual average EC values were generally lower in the wetter northern and western regions, where groundwater EC improvements were detected in rare cases. Our results based on high-resolution groundwater measurements reveal alarming water security threats associated with declining fresh groundwater quantity and quality due to many years of unsustainable use. Our analysis offers insights into the environmental implications and limitations of water-intensive development plans that other water-scarce countries might adopt

    Iran’s agriculture in the anthropocene

    No full text
    Abstract The anthropogenic impacts of development and frequent droughts have limited Iran’s water availability. This has major implications for Iran’s agricultural sector which is responsible for about 90% of water consumption at the national scale. This study investigates if declining water availability impacted agriculture in Iran. Using the Mann‐Kendall and Sen’s slope estimator methods, we explored the changes in Iran’s agricultural production and area during the 1981–2013 period. Despite decreasing water availability during this period, irrigated agricultural production and area continuously increased. This unsustainable agricultural development, which would have been impossible without the overabstraction of surface and ground water resources, has major long‐term water, food, environmental, and human security implications for Iran
    corecore