3,700 research outputs found

    Coulomb drag between one-dimensional conductors

    Full text link
    We have analyzed Coulomb drag between currents of interacting electrons in two parallel one-dimensional conductors of finite length LL attached to external reservoirs. For strong coupling, the relative fluctuations of electron density in the conductors acquire energy gap MM. At energies larger than Γ=const×vexp(LM/v)/L+Γ+\Gamma = const \times v_- \exp (-LM/v_-)/L + \Gamma_{+}, where Γ+\Gamma_{+} is the impurity scattering rate, and for L>v/ML>v_-/M, where vv_- is the fluctuation velocity, the gap leads to an ``ideal'' drag with almost equal currents in the conductors. At low energies the drag is suppressed by coherent instanton tunneling, and the zero-temperature transconductance vanishes, indicating the Fermi liquid behavior.Comment: 5 twocolumn pages in RevTex, added 1 eps-Figure and calculation of trans-resistanc

    Quantum critical behaviour of the plateau-insulator transition in the quantum Hall regime

    Get PDF
    High-field magnetotransport experiments provide an excellent tool to investigate the plateau-insulator phase transition in the integral quantum Hall effect. Here we review recent low-temperature high-field magnetotransport studies carried out on several InGaAs/InP heterostructures and an InGaAs/GaAs quantum well. We find that the longitudinal resistivity ρxx\rho_{xx} near the critical filling factor νc\nu_{c} ~ 0.5 follows the universal scaling law ρxx(ν,T)exp[Δν/(T/T0)κ]\rho_{xx}(\nu, T) \propto exp[-\Delta \nu/(T/T_{0})^{\kappa}], where Δν=ννc\Delta \nu =\nu -\nu_{c}. The critical exponent κ\kappa equals 0.56±0.020.56 \pm 0.02, which indicates that the plateau-insulator transition falls in a non-Fermi liquid universality class.Comment: 8 pages, accepted for publication in Proceedings of the Yamada Conference LX on Research in High Magnetic Fields (August 16-19, 2006, Sendai

    Fractional charge in transport through a 1D correlated insulator of finite length

    Full text link
    Transport through a one channel wire of length LL confined between two leads is examined when the 1D electron system has an energy gap 2M2M: M>TLvc/LM > T_L \equiv v_c/L induced by the interaction in charge mode (vcv_c: charge velocity in the wire). In spinless case the transformation of the leads electrons into the charge density wave solitons of fractional charge qq entails a non-trivial low energy crossover from the Fermi liquid behavior below the crossover energy TxTLMeM/[TL(1q2)]T_x \propto \sqrt{T_L M} e^{-M /[T_L(1-q^2)]} to the insulator one with the fractional charge in current vs. voltage, conductance vs. temperature, and in shot noise. Similar behavior is predicted for the Mott insulator of filling factor ν=integer/(2m)\nu = integer/(2 m').Comment: 5 twocolumn pages in RevTex, no figure

    Threshold features in transport through a 1D constriction

    Full text link
    Suppression of electron current ΔI \Delta I through a 1D channel of length LL connecting two Fermi liquid reservoirs is studied taking into account the Umklapp electron-electron interaction induced by a periodic potential. This interaction causes Hubbard gaps EHE_H for LL \to \infty. In the perturbative regime where EHvc/LE_H \ll v_c/L (vc:v_c: charge velocity), and for small deviations δn\delta n of the electron density from its commensurate values ΔI/V- \Delta I/V can diverge with some exponent as voltage or temperature V,TV,T decreases above Ec=max(vc/L,vcδn)E_c=max(v_c/L,v_c \delta n), while it goes to zero below EcE_c. This results in a nonmonotonous behavior of the conductance.Comment: Final variant published in PRL, 79, 1714; minor correction

    Transport properties of single channel quantum wires with an impurity: Influence of finite length and temperature on average current and noise

    Full text link
    The inhomogeneous Tomonaga Luttinger liquid model describing an interacting quantum wire adiabatically coupled to non-interacting leads is analyzed in the presence of a weak impurity within the wire. Due to strong electronic correlations in the wire, the effects of impurity backscattering, finite bias, finite temperature, and finite length lead to characteristic non-monotonic parameter dependencies of the average current. We discuss oscillations of the non-linear current voltage characteristics that arise due to reflections of plasmon modes at the impurity and quasi Andreev reflections at the contacts, and show how these oscillations are washed out by decoherence at finite temperature. Furthermore, the finite frequency current noise is investigated in detail. We find that the effective charge extracted in the shot noise regime in the weak backscattering limit decisively depends on the noise frequency ω\omega relative to vF/gLv_F/gL, where vFv_F is the Fermi velocity, gg the Tomonaga Luttinger interaction parameter, and LL the length of the wire. The interplay of finite bias, finite temperature, and finite length yields rich structure in the noise spectrum which crucially depends on the electron-electron interaction. In particular, the excess noise, defined as the change of the noise due to the applied voltage, can become negative and is non-vanishing even for noise frequencies larger than the applied voltage, which are signatures of correlation effects.Comment: 28 pages, 19 figures, published version with minor change

    Quantum-Hall activation gaps in graphene

    Get PDF
    We have measured the quantum-Hall activation gaps in graphene at filling factors ν=2\nu=2 and ν=6\nu=6 for magnetic fields up to 32 T and temperatures from 4 K to 300 K. The ν=6\nu =6 gap can be described by thermal excitation to broadened Landau levels with a width of 400 K. In contrast, the gap measured at ν=2\nu=2 is strongly temperature and field dependent and approaches the expected value for sharp Landau levels for fields B>20B > 20 T and temperatures T>100T > 100 K. We explain this surprising behavior by a narrowing of the lowest Landau level.Comment: 4 pages, 4 figures, updated version after review, accepted for PR
    corecore