9 research outputs found

    ΠšΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ ΠΏΠΎΡ‡Π²ΠΎΠΎΠ±Ρ€Π°Π±Π°Ρ‚Ρ‹Π²Π°ΡŽΡ‰ΠΈΠΉ Π°Π³Ρ€Π΅Π³Π°Ρ‚ для основной ΠΈ прСдпосСвной ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΏΠΎΡ‡Π²Ρ‹

    Get PDF
    One of modern methods of soil cultivation at reclamation of neglected field is layer-by-layer loosening of the top horizon by various working tools. Combined units have no removable tools. They are used not effectively both for primary cultivation and secondary tillage, and for reclamation of neglected field. This situation limits a scope of machines and reduces their annual loading. A combined unit for operations overlapping at presowing tillage have two-disk sections of frontal harrows, replaceable loosening working tools of subsurface plow and chisel type and replaceable tubular and toothed rollers. The authors developed agrotechnical requirements of design data of replaceable suspensions of disk sections, duckfoot sweeps and rollers. A placement of working tools on a universal frame provides an opportunity to have15 options of the unit for various agrotechnical and soil climatic conditions. A level of innovative development soil-cultivating the disk and duckfoot units is high, tools rather reliable and universal. Such machines operate different options of the primary and secondary soil cultivation for one pass, replace 4 one-operational machines. The mulch tillage by disk and duckfoot units replaces 2-4 passes of machine-tractor aggregates, saves 2-5 kg/ha of diesel fuel and 0.3 man-hours /ha of labor costs, productivity of winter and spring grain crops increases by 0.3 t/ha.Один ΠΈΠ· соврСмСнных ΠΏΡ€ΠΈΠ΅ΠΌΠΎΠ² ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΏΠΎΡ‡Π²Ρ‹ ΠΏΡ€ΠΈ освоСнии Π·Π°Π»Π΅ΠΆΠ΅ΠΉ - послойноС Ρ€Ρ‹Ρ…Π»Π΅Π½ΠΈΠ΅ Π²Π΅Ρ€Ρ…Π½Π΅Π³ΠΎ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π° Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ Ρ€Π°Π±ΠΎΡ‡ΠΈΠΌΠΈ ΠΎΡ€Π³Π°Π½Π°ΠΌΠΈ. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠ»ΠΈ, Ρ‡Ρ‚ΠΎ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ Π°Π³Ρ€Π΅Π³Π°Ρ‚Ρ‹ Π½Π΅ ΠΈΠΌΠ΅ΡŽΡ‚ смСнных Ρ€Π°Π±ΠΎΡ‡ΠΈΡ… ΠΎΡ€Π³Π°Π½ΠΎΠ² ΠΈ Π½Π΅ ΠΌΠΎΠ³ΡƒΡ‚ эффСктивно ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ ΠΊΠ°ΠΊ для основной ΠΈ прСдпосСвной ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΏΠΎΡ‡Π²Ρ‹, Ρ‚Π°ΠΊ ΠΈ для освоСния Π·Π°Π»Π΅ΠΆΠ½Ρ‹Ρ… ΠΏΠΎΡ‡Π², Ρ‡Ρ‚ΠΎ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡ΠΈΠ²Π°Π΅Ρ‚ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ примСнСния машин ΠΈ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ ΠΈΡ… Π³ΠΎΠ΄ΠΎΠ²ΡƒΡŽ Π·Π°Π³Ρ€ΡƒΠ·ΠΊΡƒ. Π‘ΠΎΠ·Π΄Π°Π»ΠΈ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ Π°Π³Ρ€Π΅Π³Π°Ρ‚ для совмСщСния ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ прСдпосСвной ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ ΠΏΠΎΡ‡Π²Ρ‹ с использованиСм двухдисковых сСкций Ρ„Ρ€ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… Π±ΠΎΡ€ΠΎΠ½, смСнных Ρ€Ρ‹Ρ…Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π°Π±ΠΎΡ‡ΠΈΡ… ΠΎΡ€Π³Π°Π½ΠΎΠ² плоскорСТущСго ΠΈ Ρ‡ΠΈΠ·Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ° ΠΈ смСнных ΠΏΡ€ΠΈΠΊΠ°Ρ‚Ρ‹Π²Π°ΡŽΡ‰ΠΈΡ… ΠΊΠ°Ρ‚ΠΊΠΎΠ² с Ρ‚Ρ€ΡƒΠ±Ρ‡Π°Ρ‚Ρ‹ΠΌΠΈ ΠΈ Π·ΡƒΠ±Ρ‡Π°Ρ‚Ρ‹ΠΌΠΈ Π±Π°Ρ€Π°Π±Π°Π½Π°ΠΌΠΈ. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π»ΠΈ агротСхничСскиС трСбования конструктивных ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² смСнных подвСсок дисковых сСкций, ΡΡ‚Ρ€Π΅Π»ΡŒΡ‡Π°Ρ‚Ρ‹Ρ… Π»Π°ΠΏ ΠΈ ΠΊΠ°Ρ‚ΠΊΠΎΠ². ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠ»ΠΈ, Ρ‡Ρ‚ΠΎ Ρ€Π°Π·ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Ρ€Π°Π±ΠΎΡ‡ΠΈΡ… ΠΎΡ€Π³Π°Π½ΠΎΠ² Π½Π° ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ€Π°ΠΌΠ΅ позволяСт ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ 15 Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² Π°Π³Ρ€Π΅Π³Π°Ρ‚Π° для Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… агротСхничСских ΠΈ ΠΏΠΎΡ‡Π²Π΅Π½Π½ΠΎ-климатичСских условий. Установили, Ρ‡Ρ‚ΠΎ ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ ΠΈΠ½Π½ΠΎΠ²Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΏΠΎΡ‡Π²ΠΎΠΎΠ±Ρ€Π°Π±Π°Ρ‚Ρ‹Π²Π°ΡŽΡ‰ΠΈΡ… дисколаповых Π°Π³Ρ€Π΅Π³Π°Ρ‚ΠΎΠ² (АДЛ) высокий, орудия достаточно Π½Π°Π΄Π΅ΠΆΠ½Ρ‹Π΅ ΠΈ ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½Ρ‹Π΅. Π’Π°ΠΊΠΈΠ΅ ΠΌΠ°ΡˆΠΈΠ½Ρ‹ способны Π·Π° ΠΎΠ΄ΠΈΠ½ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡ‚ΡŒ Ρ€Π°Π·Π½Ρ‹Π΅ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ основной ΠΈ прСдпосСвной ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΏΠΎΡ‡Π²Ρ‹, Π·Π°ΠΌΠ΅Π½ΡΡŽΡ‚ 4 ΠΎΠ΄Π½ΠΎΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Π΅ ΠΌΠ°ΡˆΠΈΠ½Ρ‹. ΠœΡƒΠ»ΡŒΡ‡ΠΈΡ€ΡƒΡŽΡ‰Π°Ρ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΏΠΎΡ‡Π²Ρ‹ Π°Π³Ρ€Π΅Π³Π°Ρ‚Π°ΠΌΠΈ АДЛ замСняСт 2-4 ΠΏΡ€ΠΎΡ…ΠΎΠ΄Π° МВА, экономит 2-5 ΠΊΠ³/Π³Π° дизСльного Ρ‚ΠΎΠΏΠ»ΠΈΠ²Π° ΠΈ Π½Π° 0,3 Ρ‡Π΅Π».β€’Ρ‡/Π³Π° Ρ‚Ρ€ΡƒΠ΄ΠΎΠ·Π°Ρ‚Ρ€Π°Ρ‚, ΠΏΠΎΠ²Ρ‹ΡˆΠ°Π΅Ρ‚ΡΡ ΡƒΡ€ΠΎΠΆΠ°ΠΉΠ½ΠΎΡΡ‚ΡŒ ΠΎΠ·ΠΈΠΌΡ‹Ρ… ΠΈ яровых Π΄ΠΎ 3 Ρ†/Π³Π°

    Автоматизированная линия для послСуборочной ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΊΠΎΡ€Π½Π΅ΠΏΠ»ΠΎΠ΄ΠΎΠ² ΠΈ картофСля

    Get PDF
    In the process of post-harvest processing of root crops and potatoes in Russia, mechanical sortings of various types are used, which allows to separate the material according to the size criterion and removing impurities. The main requirement for this equipment is to ensure the quality and reliability of technological processes for the impurities separation and the root crops separation into fractions with minimal damage. (Research purpose) To improve the quality of potato tubers sorting using an automated line for post-harvest processing of root crops and potatoes, which allows to reduce their damage and ensure high accuracy of separation into fractions by size. (Materials and methods) The authors studied the automated process of root crops post-harvest processing. They developed approaches and basic technical, technological and constructive solutions aimed at improving the efficiency of root crops and potatoes post-harvest processing. To automate the root crops and potatoes processing, the authors installed the universal web camera Logitech HD Pro C920. They created a basic block diagram of the electronic line system operation. (Results and discussion) The authors clarified the size and mass characteristics of potato tubers with a total weight of 38 356 grams of Nevsky variety of the 2019 harvest and their shape coefficient. They developed design documentation. An experimental line was prepared for potato tubers post-harvest sorting with an original circuit diagram of the electronic system operation. The authors substantiated its design and operational-technological parameters. Practical studies of the automated line work were carried out in the Ryazan region on the basis of the Institute of Seed Production and Agrotechnologies – a branch of the Federal Scientific Agroengineering Center VIM. (Conclusions) The authors determined that the developed automated line for root crops and potatoes post-harvest sorting thanks to digital technologies reduced labor costs by eliminating manual sorting, as well as improving the quality of potato tubers and the accuracy of sorting by size to 95-98 percent. It was revealed that damage to potato tubers did not exceed one percent.Π’ процСссС послСуборочной ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΊΠΎΡ€Π½Π΅ΠΏΠ»ΠΎΠ΄ΠΎΠ² ΠΈ картофСля Π² России ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ мСханичСскиС сортировки Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ‚ΠΈΠΏΠΎΠ², ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠ΅ Ρ€Π°Π·Π΄Π΅Π»ΡΡ‚ΡŒ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΏΠΎ Ρ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΠΌΡƒ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΡƒ ΠΈ ΠΎΡ‚Π²ΠΎΠ΄ΠΈΡ‚ΡŒ примСси. ОсновноС Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊ этому ΠΎΠ±ΠΎΡ€ΡƒΠ΄ΠΎΠ²Π°Π½ΠΈΡŽ – обСспСчСниС качСства ΠΈ надСТности выполнСния тСхнологичСских процСссов выдСлСния примСсСй ΠΈ Ρ€Π°Π·Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ€Π½Π΅ΠΊΠ»ΡƒΠ±Π½Π΅ΠΏΠ»ΠΎΠ΄ΠΎΠ² Π½Π° Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΈ ΠΏΡ€ΠΈ минимальном ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠΈ. (ЦСль исслСдования) ΠŸΠΎΠ²Ρ‹ΡΠΈΡ‚ΡŒ качСство сортирования ΠΊΠ»ΡƒΠ±Π½Π΅ΠΉ картофСля с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ для послСуборочной ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΊΠΎΡ€Π½Π΅ΠΏΠ»ΠΎΠ΄ΠΎΠ² ΠΈ картофСля, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰Π΅ΠΉ ΡΠ½ΠΈΠ·ΠΈΡ‚ΡŒ ΠΈΡ… поврСТдСния ΠΈ ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΡ‚ΡŒ Π²Ρ‹ΡΠΎΠΊΡƒΡŽ Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ раздСлСния Π½Π° Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΈ ΠΏΠΎ Ρ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΠΌΡƒ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΡƒ. (ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹) Π˜Π·ΡƒΡ‡ΠΈΠ»ΠΈ Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ процСсс послСуборочной ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΊΠΎΡ€Π½Π΅ΠΊΠ»ΡƒΠ±Π½Π΅ΠΏΠ»ΠΎΠ΄ΠΎΠ². Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π»ΠΈ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹ ΠΈ основныС Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΎ-тСхнологичСскиС ΠΈ конструктивныС Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ, Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹Π΅ Π½Π° ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ эффСктивности послСуборочной ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΊΠΎΡ€Π½Π΅ΠΏΠ»ΠΎΠ΄ΠΎΠ² ΠΈ картофСля. Для Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠ·Π°Ρ†ΠΈΠΈ процСсса ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΊΠΎΡ€Π½Π΅ΠΏΠ»ΠΎΠ΄ΠΎΠ² ΠΈ картофСля установили ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½ΡƒΡŽ Π²eΠ±-ΠΊΠ°ΠΌΠ΅Ρ€Ρƒ Logitech HD Pro C920. Π‘ΠΎΠ·Π΄Π°Π»ΠΈ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΈΠ°Π»ΡŒΠ½ΡƒΡŽ Π±Π»ΠΎΠΊ-схСму функционирования элСктронной систСмы Π»ΠΈΠ½ΠΈΠΈ. (Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈ обсуТдСниС) Π£Ρ‚ΠΎΡ‡Π½ΠΈΠ»ΠΈ Ρ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎ-массовыС характСристики ΠΊΠ»ΡƒΠ±Π½Π΅ΠΉ картофСля ΠΎΠ±Ρ‰Π΅ΠΉ массой 38 356 Π³Ρ€Π°ΠΌΠΌΠΎΠ² сорта НСвский уроТая 2019 Π³ΠΎΠ΄Π° ΠΈ коэффициСнт ΠΈΡ… Ρ„ΠΎΡ€ΠΌΡ‹. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π»ΠΈ ΠΊΠΎΠ½ΡΡ‚Ρ€ΡƒΠΊΡ‚ΠΎΡ€ΡΠΊΡƒΡŽ Π΄ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΡŽ. Π˜Π·Π³ΠΎΡ‚ΠΎΠ²ΠΈΠ»ΠΈ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΡƒΡŽ линию для послСуборочного сортирования ΠΊΠ»ΡƒΠ±Π½Π΅ΠΉ картофСля с ΠΎΡ€ΠΈΠ³ΠΈΠ½Π°Π»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Π±Π»ΠΎΠΊ-схСмой функционирования элСктронной систСмы. Обосновали Π΅Π΅ конструктивныС ΠΈ Ρ€Π΅ΠΆΠΈΠΌΠ½ΠΎ-тСхнологичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹. ΠŸΡ€Π°ΠΊΡ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ исслСдования Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ ΠΏΡ€ΠΎΠ²Π΅Π»ΠΈ Π² Рязанской области Π½Π° Π±Π°Π·Π΅ Π˜Π½ΡΡ‚ΠΈΡ‚ΡƒΡ‚Π° сСмСноводства ΠΈ Π°Π³Ρ€ΠΎΡ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ – Ρ„ΠΈΠ»ΠΈΠ°Π»Π° Π€Π΅Π΄Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π½Π°ΡƒΡ‡Π½ΠΎΠ³ΠΎ Π°Π³Ρ€ΠΎΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π½ΠΎΠ³ΠΎ Ρ†Π΅Π½Ρ‚Ρ€Π° Π’Π˜Πœ. (Π’Ρ‹Π²ΠΎΠ΄Ρ‹) ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠ»ΠΈ, Ρ‡Ρ‚ΠΎ разработанная автоматизированная линия для послСуборочного сортирования ΠΊΠΎΡ€Π½Π΅ΠΏΠ»ΠΎΠ΄ΠΎΠ² ΠΈ картофСля благодаря Ρ†ΠΈΡ„Ρ€ΠΎΠ²Ρ‹ΠΌ тСхнологиям позволяСт ΡΠ½ΠΈΠ·ΠΈΡ‚ΡŒ Ρ‚Ρ€ΡƒΠ΄ΠΎΠ·Π°Ρ‚Ρ€Π°Ρ‚Ρ‹, ΠΈΡΠΊΠ»ΡŽΡ‡ΠΈΠ² Ρ€ΡƒΡ‡Π½ΡƒΡŽ сортировку, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠΎΠ²Ρ‹ΡΠΈΡ‚ΡŒ качСство ΠΊΠ»ΡƒΠ±Π½Π΅ΠΉ картофСля ΠΈ Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΈΡ… сортирования ΠΏΠΎ Ρ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΠΌΡƒ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΡƒ Π΄ΠΎ 95-98 ΠΏΡ€ΠΎΡ†Π΅Π½Ρ‚ΠΎΠ². Выявили, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΊΠ»ΡƒΠ±Π½Π΅ΠΉ картофСля Π½Π΅ ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°Π΅Ρ‚ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΡ†Π΅Π½Ρ‚Π°

    ИсслСдованиС ΡΠ΅ΠΏΠ°Ρ€ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ систСмы с использованиСм Ρ‚Π΅ΠΏΠ»ΠΎΡ‚Ρ‹ ΠΎΡ‚Ρ€Π°Π±ΠΎΡ‚Π°Π²ΡˆΠΈΡ… Π³Π°Π·ΠΎΠ² двигатСля свСклоуборочного ΠΊΠΎΠΌΠ±Π°ΠΉΠ½Π°

    Get PDF
    It was noted that increased soil moisture worsens the quality of harvesting root crops due to a decrease in the completeness of separation. To increase the separating capacity of a slotted cleaner for root crops, it was proposed to improve the heating of the separating surface with hot exhaust gas. (Research purpose) To optimize the design and technological parameters of an exhaust gas heat separation system of the sugar beet harvester power plant. (Materials and methods) Federal Scientific Agroengineering Center VIM developed an exhaust gas heat separation system for harvesting root crops and potatoes in high moisture conditions using the heat of the harvester power plant exhaust gases. The cleaning quality of the separating system of a self-propelled sugar beet harvester was determined under the gradual engine load from 0 to 100 percent of the nominal rated power. The temperature of the exhaust gases was measured with the assumption of changes in the engine load and its effective power. (Results and discussion) The experiment revealed an increase in the completeness of the separation of a root crops heap from 96.0 to 98.8 percent at 26-32 percent soil moisture due to the separation system in the form of a cleaning star, which uses the heat of the engine exhaust gases. The established optimal values of the factors under consideration are as follows: the separating star rotation rate is 21.8 revolutions per minute, the distance between the separating star and the deflector is 128.4 millimeters. (Conclusions) It was determined that the high quality of the technological process of root crops harvesting in high soil moisture conditions ensuring a 97-percent separation efficiency is possible if optimize the separating device design and technological parameters and maintain the separating star rotation rate at 20-22 revolutions per minute and the distance between the separating star and the deflector within 120-140 millimeters. The authors noted the prospects of developing this system and the need for theoretical and experimental studies to improve the design and technological process of the harvester separating system.ΠžΡ‚ΠΌΠ΅Ρ‚ΠΈΠ»ΠΈ, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½Π°Ρ Π²Π»Π°ΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΏΠΎΡ‡Π²Ρ‹ ΡƒΡ…ΡƒΠ΄ΡˆΠ°Π΅Ρ‚ качСство ΡƒΠ±ΠΎΡ€ΠΊΠΈ ΠΊΠΎΡ€Π½Π΅ΠΏΠ»ΠΎΠ΄ΠΎΠ² ΠΈΠ·-Π·Π° сниТСния ΠΏΠΎΠ»Π½ΠΎΡ‚Ρ‹ сСпарации. Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ²Ρ‹ΡΠΈΡ‚ΡŒ ΡΠ΅ΠΏΠ°Ρ€ΠΈΡ€ΡƒΡŽΡ‰ΡƒΡŽ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ Ρ‰Π΅Π»Π΅Π²Ρ‹Ρ… устройств для очистки ΠΊΠΎΡ€Π½Π΅ΠΏΠ»ΠΎΠ΄ΠΎΠ², ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠΈΠ»ΠΈ ΡƒΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ ΠΎΠ±ΠΎΠ³Ρ€Π΅Π² ΡΠ΅ΠΏΠ°Ρ€ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ повСрхности горячим Π²Ρ‹Ρ…Π»ΠΎΠΏΠ½Ρ‹ΠΌ Π³Π°Π·ΠΎΠΌ. (ЦСль исслСдований) ΠžΠΏΡ‚ΠΈΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ конструктивно-тСхнологичСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ ΡΠ΅ΠΏΠ°Ρ€ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ устройства с использованиСм Ρ‚Π΅ΠΏΠ»ΠΎΡ‚Ρ‹ ΠΎΡ‚Ρ€Π°Π±ΠΎΡ‚Π°Π²ΡˆΠΈΡ… Π³Π°Π·ΠΎΠ² силовой установки ΠΌΠ°ΡˆΠΈΠ½Ρ‹ для ΡƒΠ±ΠΎΡ€ΠΊΠΈ сахарной свСклы. (ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹) Π’ Π€Π΅Π΄Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠΌ Π½Π°ΡƒΡ‡Π½ΠΎΠΌ Π°Π³Ρ€ΠΎΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π½ΠΎΠΌ Ρ†Π΅Π½Ρ‚Ρ€Π΅ Π’Π˜Πœ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π»ΠΈ ΡΠ΅ΠΏΠ°Ρ€ΠΈΡ€ΡƒΡŽΡ‰ΡƒΡŽ систСму ΠΌΠ°ΡˆΠΈΠ½Ρ‹ для ΡƒΠ±ΠΎΡ€ΠΊΠΈ ΠΊΠΎΡ€Π½Π΅ΠΏΠ»ΠΎΠ΄ΠΎΠ² ΠΈ картофСля Π² условиях ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½ΠΎΠΉ влаТности с использованиСм Ρ‚Π΅ΠΏΠ»ΠΎΡ‚Ρ‹ ΠΎΡ‚Ρ€Π°Π±ΠΎΡ‚Π°Π²ΡˆΠΈΡ… Π³Π°Π·ΠΎΠ² силовой установки. ΠšΠ°Ρ‡Π΅ΡΡ‚Π²ΠΎ очистки ΡΠ΅ΠΏΠ°Ρ€ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ систСмы самоходного ΠΊΠΎΠΌΠ±Π°ΠΉΠ½Π° для ΡƒΠ±ΠΎΡ€ΠΊΠΈ сахарной свСклы опрСдСляли ΠΏΡ€ΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΌ Π½Π°Π³Ρ€ΡƒΠΆΠ΅Π½ΠΈΠΈ двигатСля ΠΎΡ‚ 0 Π΄ΠΎ 100 ΠΏΡ€ΠΎΡ†Π΅Π½Ρ‚ΠΎΠ² номинальной мощности. Π˜Π·ΠΌΠ΅Ρ€ΡΠ»ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρƒ ΠΎΡ‚Ρ€Π°Π±ΠΎΡ‚Π°Π²ΡˆΠΈΡ… Π³Π°Π·ΠΎΠ² с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ измСнСния Π½Π°Π³Ρ€ΡƒΠ·ΠΊΠΈ двигатСля ΠΈ Π΅Π³ΠΎ эффСктивной мощности. (Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈ обсуТдСниС) Выявили ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ ΠΏΠΎΠ»Π½ΠΎΡ‚Ρ‹ сСпарации Π²ΠΎΡ€ΠΎΡ…Π° ΠΊΠΎΡ€Π½Π΅ΠΏΠ»ΠΎΠ΄ΠΎΠ² с 96,0 Π΄ΠΎ 98,8 ΠΏΡ€ΠΎΡ†Π΅Π½Ρ‚ΠΎΠ² ΠΏΡ€ΠΈ 26-32-ΠΏΡ€ΠΎΡ†Π΅Π½Ρ‚Π½ΠΎΠΉ влаТности ΠΏΠΎΡ‡Π²Ρ‹ благодаря ΡΠ΅ΠΏΠ°Ρ€ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ систСмС Π² Π²ΠΈΠ΄Π΅ ΠΎΡ‡ΠΈΡΡ‚ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Π·Π²Π΅Π·Π΄Ρ‹, Π³Π΄Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ Ρ‚Π΅ΠΏΠ»ΠΎΡ‚Π° ΠΎΡ‚Ρ€Π°Π±ΠΎΡ‚Π°Π²ΡˆΠΈΡ… Π³Π°Π·ΠΎΠ² двигатСля. Установили ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ значСния рассматриваСмых Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ²: частота вращСния ΡΠ΅ΠΏΠ°Ρ€ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ Π·Π²Π΅Π·Π΄Ρ‹ 21,8 ΠΎΠ±ΠΎΡ€ΠΎΡ‚Π° Π² ΠΌΠΈΠ½ΡƒΡ‚Ρƒ, расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ ΡΠ΅ΠΏΠ°Ρ€ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ Π·Π²Π΅Π·Π΄ΠΎΠΉ ΠΈ Π΄Π΅Ρ„Π»Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ – 128,4 ΠΌΠΈΠ»Π»ΠΈΠΌΠ΅Ρ‚Ρ€Π°. (Π’Ρ‹Π²ΠΎΠ΄Ρ‹) ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠ»ΠΈ, Ρ‡Ρ‚ΠΎ качСствСнноС Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ тСхнологичСского процСсса ΡƒΠ±ΠΎΡ€ΠΊΠΈ ΠΊΠΎΡ€Π½Π΅ΠΏΠ»ΠΎΠ΄ΠΎΠ² Π² условиях ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½ΠΎΠΉ влаТности ΠΏΠΎΡ‡Π²Ρ‹ с ΠΏΠΎΠ»Π½ΠΎΡ‚ΠΎΠΉ сСпарации 97 ΠΏΡ€ΠΎΡ†Π΅Π½Ρ‚ΠΎΠ² Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ конструктивно-тСхнологичСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΡΠ΅ΠΏΠ°Ρ€ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ устройства: ΠΏΡ€ΠΈ частотС вращСния ΡΠ΅ΠΏΠ°Ρ€ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ Π·Π²Π΅Π·Π΄Ρ‹ 20-22 ΠΎΠ±ΠΎΡ€ΠΎΡ‚ΠΎΠ² Π² ΠΌΠΈΠ½ΡƒΡ‚Ρƒ ΠΈ расстоянии ΠΌΠ΅ΠΆΠ΄Ρƒ ΡΠ΅ΠΏΠ°Ρ€ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ Π·Π²Π΅Π·Π΄ΠΎΠΉ ΠΈ Π΄Π΅Ρ„Π»Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ 120-140 ΠΌΠΈΠ»Π»ΠΈΠΌΠ΅Ρ‚Ρ€ΠΎΠ². ΠžΡ‚ΠΌΠ΅Ρ‚ΠΈΠ»ΠΈ ΠΏΠ΅Ρ€ΡΠΏΠ΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π΄Π°Π½Π½ΠΎΠΉ систСмы ΠΈ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ тСорСтичСских ΠΈ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… исслСдований ΠΏΠΎ ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½ΡΡ‚Π²ΠΎΠ²Π°Π½ΠΈΡŽ конструкции ΠΈ тСхнологичСского процСсса Ρ€Π°Π±ΠΎΡ‚Ρ‹ ΡΠ΅ΠΏΠ°Ρ€ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ систСмы ΡƒΠ±ΠΎΡ€ΠΎΡ‡Π½Ρ‹Ρ… машин

    Tilthmaker for once-over soil tillage

    No full text
    One of modern methods of soil cultivation at reclamation of neglected field is layer-by-layer loosening of the top horizon by various working tools. Combined units have no removable tools. They are used not effectively both for primary cultivation and secondary tillage, and for reclamation of neglected field. This situation limits a scope of machines and reduces their annual loading. A combined unit for operations overlapping at presowing tillage have two-disk sections of frontal harrows, replaceable loosening working tools of subsurface plow and chisel type and replaceable tubular and toothed rollers. The authors developed agrotechnical requirements of design data of replaceable suspensions of disk sections, duckfoot sweeps and rollers. A placement of working tools on a universal frame provides an opportunity to have15 options of the unit for various agrotechnical and soil climatic conditions. A level of innovative development soil-cultivating the disk and duckfoot units is high, tools rather reliable and universal. Such machines operate different options of the primary and secondary soil cultivation for one pass, replace 4 one-operational machines. The mulch tillage by disk and duckfoot units replaces 2-4 passes of machine-tractor aggregates, saves 2-5 kg/ha of diesel fuel and 0.3 man-hours /ha of labor costs, productivity of winter and spring grain crops increases by 0.3 t/ha

    Results of research on the intensification of the process of cleaning potato tubers by ultrasonic action and their subsequent storage

    No full text
    The data on the gross harvest of tubers in the Russian Federation are given: approximately 71% of potatoes are produced by the population, 17.4% by agricultural enterprises and 11.5% by farms. It is noted that in the industrial production of potatoes, negative impacts on the soil are associated with crushing and removal of the fertile soil layer, which arise in the process of extracting root crops by the digging and separating working bodies of the harvesting machines. It is proposed to use ultrasonic action on root crops for cleaning them from soil impurities. It was determined that in order to intensify the process of cleaning tubers by ultrasonic action during harvesting, it is necessary to provide operating and technological parameters (frequency of ultrasound oscillations f1 = 48 kHz, vibration intensity S = 42 W/cmΒ², exposure time t = 90 s) of ultrasonic equipment, which will ensure the completeness purification is not less than 84.7%.The results of comparative studies on the intensification of the cleaning of potato tubers allow us to conclude that, regardless of the mass and type of pollution, the greatest positive effect of ultrasonic exposure is observed when processing tubers, the completeness of cleaning of which is on average 13-20% higher

    Automated Line for Post-Harvest Processing of Root Crops and Potatoes

    Get PDF
    In the process of post-harvest processing of root crops and potatoes in Russia, mechanical sortings of various types are used, which allows to separate the material according to the size criterion and removing impurities. The main requirement for this equipment is to ensure the quality and reliability of technological processes for the impurities separation and the root crops separation into fractions with minimal damage. (Research purpose) To improve the quality of potato tubers sorting using an automated line for post-harvest processing of root crops and potatoes, which allows to reduce their damage and ensure high accuracy of separation into fractions by size. (Materials and methods) The authors studied the automated process of root crops post-harvest processing. They developed approaches and basic technical, technological and constructive solutions aimed at improving the efficiency of root crops and potatoes post-harvest processing. To automate the root crops and potatoes processing, the authors installed the universal web camera Logitech HD Pro C920. They created a basic block diagram of the electronic line system operation. (Results and discussion) The authors clarified the size and mass characteristics of potato tubers with a total weight of 38 356 grams of Nevsky variety of the 2019 harvest and their shape coefficient. They developed design documentation. An experimental line was prepared for potato tubers post-harvest sorting with an original circuit diagram of the electronic system operation. The authors substantiated its design and operational-technological parameters. Practical studies of the automated line work were carried out in the Ryazan region on the basis of the Institute of Seed Production and Agrotechnologies – a branch of the Federal Scientific Agroengineering Center VIM. (Conclusions) The authors determined that the developed automated line for root crops and potatoes post-harvest sorting thanks to digital technologies reduced labor costs by eliminating manual sorting, as well as improving the quality of potato tubers and the accuracy of sorting by size to 95-98 percent. It was revealed that damage to potato tubers did not exceed one percent

    Development and Modeling of an Onion Harvester with an Automated Separation System

    No full text
    One of the most important problems during the implementation of any technology is to reduce labor costs, energy, and resource conservation while increasing the yield of cultivated crops and, as a result, reducing the cost of production. Despite a significant amount of scientific research devoted to the problem of energy and resource conservation in the cultivation and harvesting of agricultural crops and the development of mechanization tools that ensure the high-quality performance of technological operations, there remain issues that have not been fully resolved to date. In addition, not all the results of known theoretical and experimental studies can be directly applied to intensify the process of harvesting root crops since the quality indicators of marketable products depend on the type and technological parameters of the separating working bodies. This article presents the design of a rod elevator with an adjustable angle of inclination of the web, which reduces damage to commercial products of root crops and bulbs with maximum completeness of separation. A laboratory facility has been developed to substantiate the design and technological parameters of a separating system with an adjustable web inclination angle. Based on the results of theoretical and experimental studies, a machine for harvesting onions with an adjustable blade inclination angle has been developed, which provides an increase in the quality indicators of onion harvesting at optimal values of the parameters: (1) translational speed of movement of the rod elevator with an adjustable web inclination angle of 1.7 m/s with a 98.4% completeness of separation and 1.7% damage to the bulbs; (2) translational speed of the movement of the machine for harvesting root crops and onions 1.0 m/s with a 98.5% separation completeness and 1.1% damage to the bulbs; (3) digging depth of the digging plowshare equal to 0.02 m, with an onion heap separation completeness of more than 98% and product damage of less than 1.4%. The results of theoretical and experimental studies of a rod elevator to substantiate the design and technological parameters during its interaction with a heap of onion are presented. Basic design and technological parameters of the studied rod elevator are substantiated, namely, the distance S1 of the movement of the rod of the actuators, the angle a1 of the longitudinal inclination of the surface of the rod elevator relative to the horizon, and differential equations of motion of the onion-sowing pile element on the surface of the rod elevator with an adjustable angle of inclination of the web

    Development and Modeling of an Onion Harvester with an Automated Separation System

    No full text
    One of the most important problems during the implementation of any technology is to reduce labor costs, energy, and resource conservation while increasing the yield of cultivated crops and, as a result, reducing the cost of production. Despite a significant amount of scientific research devoted to the problem of energy and resource conservation in the cultivation and harvesting of agricultural crops and the development of mechanization tools that ensure the high-quality performance of technological operations, there remain issues that have not been fully resolved to date. In addition, not all the results of known theoretical and experimental studies can be directly applied to intensify the process of harvesting root crops since the quality indicators of marketable products depend on the type and technological parameters of the separating working bodies. This article presents the design of a rod elevator with an adjustable angle of inclination of the web, which reduces damage to commercial products of root crops and bulbs with maximum completeness of separation. A laboratory facility has been developed to substantiate the design and technological parameters of a separating system with an adjustable web inclination angle. Based on the results of theoretical and experimental studies, a machine for harvesting onions with an adjustable blade inclination angle has been developed, which provides an increase in the quality indicators of onion harvesting at optimal values of the parameters: (1) translational speed of movement of the rod elevator with an adjustable web inclination angle of 1.7 m/s with a 98.4% completeness of separation and 1.7% damage to the bulbs; (2) translational speed of the movement of the machine for harvesting root crops and onions 1.0 m/s with a 98.5% separation completeness and 1.1% damage to the bulbs; (3) digging depth of the digging plowshare equal to 0.02 m, with an onion heap separation completeness of more than 98% and product damage of less than 1.4%. The results of theoretical and experimental studies of a rod elevator to substantiate the design and technological parameters during its interaction with a heap of onion are presented. Basic design and technological parameters of the studied rod elevator are substantiated, namely, the distance S1 of the movement of the rod of the actuators, the angle a1 of the longitudinal inclination of the surface of the rod elevator relative to the horizon, and differential equations of motion of the onion-sowing pile element on the surface of the rod elevator with an adjustable angle of inclination of the web
    corecore