8,712 research outputs found

    The correlation of Skylab L-band brightness temperatures with antecedent precipitation

    Get PDF
    The S194 L-band radiometer flown on the Skylab mission measured terrestrial radiation at the microwave wavelength of 21.4 cm. The terrain emissivity at this wavelength is strongly dependent on the soil moisture content, which can be inferred from antecedent precipitation. For the Skylab data acquisition pass from the Oklahoma panhandle to southeastern Texas on 11 June 1973, the S194 brightness temperatures are highly correlated with antecedent precipitation from the preceding eleven day period, but very little correlation was apparent for the preceding five day period. The correlation coefficient between the averaged antecedent precipitation index values and the corresponding S194 brightness temperatures between 230 K and 270 K, the region of apparent response to soil moisture in the data, was -0.97. The equation of the linear least squares line is given

    Development of an early warning system of crop moisture conditions using passive microwave

    Get PDF
    Emissivities were calculated from the Nimbus 5 electrically scanning microwave radiometer (ESMR) over 25 km grid cells for the southern Great Plains includin the western two-thirds of Kansas and Oklahoma and northwest Texas. These emissivities, normalized for seasonal temperature changes, were in excellent agreement with theory and measurements made from aircraft and truck sensors at the 1.55 cm wavelength of ESMR. These emissivities were related to crop moisture conditions of the winter wheat in the major wheat producing counties of the three states. High correlations were noted between emissitivity and an antecedent precipitation index (API) used to infer soil moisture for periods when the soils were essentially bare. The emissivities from ESMR were related through API and actual crop condition reports to progress of fall planting, adequacy of crop moisture for stand establishment, and periods of excessive moisture that necessitated replanting. Periods of prolonged frozen soil in the winter were observable at several grid points. The average emissivities of the canopy/soil surface during the maximum canopy development times in the spring showed a good agreement with moisture stress inferred from rainfall and yield data

    Identification of the mRNA targets of tRNA-specific regulation using genome-wide simulation of translation

    Get PDF
    FUNDING Biotechnology and Biological Sciences Research Council (BBSRC) [BB/I020926/1 to I.S.]; BBSRC PhD studentship award [C103817D to I.S. and M.C.R.]; Scottish Universities Life Science Alliance PhD studentship award (to M.C.R. and I.S.]. Funding for open access charge: BBSRC. Conflict of interest statement. None declared.Peer reviewedPublisher PD

    Z-2 Space Suit: A Case Study in Human Spaceflight Public Outreach

    Get PDF
    NASA Johnson Space Center's Z-series of planetary space suit prototypes is an iterative development platform with a Mars-forward design philosophy, targeting a Mars surface mission in the mid-2030s. The first space suit assembly, called the Z-1, was delivered in 2012. While meeting the project's stated requirements and objectives, the general public's reception primarily focused on the color scheme, which vaguely invoked similarity to a certain animated cartoon character. The public at large has and continues to be exposed to varying space suit design aesthetics from popular culture and low TRL technology maturation efforts such as mechanical counterpressure. The lesson learned was that while the design aesthetic is not important from an engineering perspective, the perception of the public is important for NASA and human spaceflight in general. For the Z-2 space suit, an integrated public outreach strategy was employed to engage, excite and educate the public on the current technology of space suits and NASA's plans moving forward. The keystone of this strategy was a public vote on three different suit cover layer aesthetics, the winner of which would be used as inspiration in fabrication. Other components included social media, university collaboration, and select media appearances, the cumulative result of which, while intangible in its benefit, was ultimately a positive effect in terms of the image of NASA as well as the dissemination of information vital to dispelling public misconceptions

    Microwave remote sensing of soil moisture, volume 1

    Get PDF
    Multifrequency sensor data from NASA's C-130 aircraft were used to determine which of the all weather microwave sensors demonstrated the highest correlation to surface soil moisture over optimal bare soil conditions, and to develop and test techniques which use visible/infrared sensors to compensate for the vegetation effect in this sensor's response to soil moisture. The L-band passive microwave radiometer was found to be the most suitable single sensor system to estimate soil moisture over bare fields. The perpendicular vegetation index (PVI) as determined from the visible/infrared sensors was useful as a measure of the vegetation effect on the L-band radiometer response to soil moisture. A linear equation was developed to estimate percent field capacity as a function of L-band emissivity and the vegetation index. The prediction algorithm improves the estimation of moisture significantly over predictions from L-band emissivity alone

    Development of visible/infrared/microwave agriculture classification and biomass estimation algorithms, volume 2

    Get PDF
    Agricultural crop classification models using two or more spectral regions (visible through microwave) were developed and tested and biomass was estimated by including microwave with visible and infrared data. The study was conducted at Guymon, Oklahoma and Dalhart, Texas utilizing aircraft multispectral data and ground truth soil moisture and biomass information. Results indicate that inclusion of C, L, and P band active microwave data from look angles greater than 35 deg from nadir with visible and infrared data improved crop discrimination and biomass estimates compared to results using only visible and infrared data. The active microwave frequencies were sensitive to different biomass levels. In addition, two indices, one using only active microwave data and the other using data from the middle and near infrared bands, were well correlated to total biomass
    corecore