18 research outputs found

    A wireless platform for in vivo measurement of resistance properties of the gastrointestinal tract

    Get PDF
    Active locomotion of wireless capsule endoscopes has the potential to improve the diagnostic yield of this painless technique for the diagnosis of gastrointestinal tract disease. In order to design effective locomotion mechanisms, a quantitative measure of the propelling force required to effectively move a capsule inside the gastrointestinal tract is necessary. In this study, we introduce a novel wireless platform that is able to measure the force opposing capsule motion, without perturbing the physiologic conditions with physical connections to the outside of the gastrointestinal tract. The platform takes advantage of a wireless capsule that is magnetically coupled with an external permanent magnet. A secondary contribution of this manuscript is to present a real-time method to estimate the axial magnetic force acting on a wireless capsule manipulated by an external magnetic field. In addition to the intermagnetic force, the platform provides real-time measurements of the capsule position, velocity, and acceleration. The platform was assessed with benchtop trials within a workspace that extends 15 cm from each side of the external permanent magnet, showing average error in estimating the force and the position of less than 0.1 N and 10 mm, respectively. The platform was also able to estimate the dynamic behavior of a known resistant force with an error of 5.45%. Finally, an in vivo experiment on a porcine colon model validated the feasibility of measuring the resistant force in opposition to magnetic propulsion of a wireless capsule

    SMAC — A Modular Open Source Architecture for Medical Capsule Robots

    Get PDF
    The field of Medical Capsule Robots (MCRs) is gaining momentum in the robotics community, with applications spanning from abdominal surgery to gastrointestinal (GI) endoscopy. MCRs are miniature multifunctional devices usually constrained in both size and on-board power supply. The design process for MCRs is time consuming and resource intensive, as it involves the development of custom hardware and software components. In this work, we present the STORM Lab Modular Architecture for Capsules (SMAC), a modular open source architecture for MCRs aiming to provide the MCRs research community with a tool for shortening the design and development time for capsule robots. The SMAC platform consists of both hardware modules and firmware libraries that can be used for developing MCRs. In particular, the SMAC modules are miniature boards of uniform diameter (i.e., 9.8 mm) that are able to fulfill five different functions: signal coordination combined with wireless data transmission, sensing, actuation, powering and vision/illumination. They are small in size, low power, and have reconfigurable software libraries for the Hardware Abstraction Layer (HAL), which has been proven to work reliably for different types of MCRs. A design template for a generic SMAC application implementing a robust communication protocol is presented in this work, together with its finite state machine abstraction, capturing all the architectural components involved. The reliability of the wireless link is assessed for different levels of data transmission power and separation distances. The current consumption for each SMAC module is quantified and the timing of a SMAC radio message transmission is characterized. Finally, the applicability of SMAC in the field of MCRs is discussed by analysing examples from the literature

    Toward Rapid Prototyping of Miniature Capsule Robots

    Get PDF
    Minimally invasive robotic surgery techniques are becoming popular thanks to their enhanced patient benefits, including shorter recovery time, better cosmetic results and reduced discomforts. Less invasive procedures would be achieved with the use of Medical Capsule Robots (MCRs). These devices are characterized by low power requirements and small dimensions as well as uncompromising safety. MCRs operate wirelessly in abdominal Minimally Invasive Surgery (MIS) and Natural Orifice Transluminal Endoscopic Surgery (NOTES) or in the Gastrointestinal (GI) tract. The design process of MCRs, however, is expensive and time consuming. A platform for rapid prototyping MCRs is needed so that MCR researchers can reduce development costs and spend more time in studying innovative MCR applications. In this work, we introduce an open source modular platform geared toward rapid prototyping MCRs. To speed up the prototyping process, the MCR is programmed using TinyOS instead of bare-bone C. We present the hardware architecture of the platform, and the motivation for using TinyOS. To show the viability of TinyOS, we present results from an experiment involving sensing, actuation and wireless communication. This work lays the foundation for our future goal of building an integrated design environment for the design, analysis and simulation of MCRs

    Closed-Loop Control of Local Magnetic Actuation for Robotic Surgical Instruments

    Get PDF
    We propose local magnetic actuation (LMA) as an approach to robotic actuation for surgical instruments. An LMA actuation unit consists of a pair of diametrically magnetized single-dipole cylindrical magnets, working as magnetic gears across the abdominal wall. In this study, we developed a dynamic model for an LMA actuation unit by extending the theory proposed for coaxial magnetic gears. The dynamic model was used for closed-loop control, and two alternative strategies-using either the angular velocity at the motor or at the load as feedback parameter-were compared. The amount of mechanical power that can be transferred across the abdominal wall at different intermagnetic distances was also investigated. The proposed dynamic model presented a relative error below 7.5% in estimating the load torque from the system parameters. Both the strategies proposed for closed-loop control were effective in regulating the load speed with a relative error below 2% of the desired steady-state value. However, the load-side closed-loop control approach was more precise and allowed the system to transmit larger values of torque, showing, at the same time, less dependence from the angular velocity. In particular, an average value of 1.5 mN·m can be transferred at 7 cm, increasing up to 13.5 mN·m as the separation distance is reduced down to 2 cm. Given the constraints in diameter and volume for a surgical instrument, the proposed approach allows for transferring a larger amount of mechanical power than what would be possible to achieve by embedding commercial dc motors

    A Magnetic Drug Delivery Capsule Based on a Coil Actuation Mechanism

    Get PDF
    Current Wireless Capsule Endoscopic systems (WCE) provide only diagnostic tools, but in the future, advanced functionalities such as controllable drug delivery could be available for clinicians. This work introduces a Magnetic Drug Delivery Capsule (MDDC). The MDCC is based on a coil actuation mechanism that enables the deployment of a drug chamber from the device body. In this work, we present the prototype design and the results of bench trials that demonstrated the device ability to trigger the drug deployment by characterizing the magnetic field and resulting force

    Wireless Tissue Palpation for Intraoperative Detection of Lumps in the Soft Tissue

    Get PDF
    In an open surgery, identification of precise margins for curative tissue resection is performed by manual palpation. This is not the case for minimally invasive and robotic procedures, where tactile feedback is either distorted or not available. In this paper, we introduce the concept of intraoperative wireless tissue palpation. The wireless palpation probe (WPP) is a cylindrical device (15 mm in diameter, 60 mm in length) that can be deployed through a trocar incision and directly controlled by the surgeon to create a volumetric stiffness distribution map of the region of interest. This map can then be used to guide the tissue resection to minimize healthy tissue loss. The wireless operation prevents the need for a dedicated port and reduces the chance of instrument clashing in the operating field. The WPP is able to measure in real time the indentation pressure with a sensitivity of 34 Pa, the indentation depth with an accuracy of 0.68 mm, and the probe position with a maximum error of 11.3 mm in a tridimensional workspace. The WPP was assessed on the benchtop in detecting the local stiffness of two different silicone tissue simulators (elastic modulus ranging from 45 to 220 kPa), showing a maximum relative error below 5%. Then, in vivo trials were aimed to identify an agar-gel lump injected into a porcine liver and to assess the device usability within the frame of a laparoscopic procedure. The stiffness map created intraoperatively by the WPP was compared with a map generated ex vivo by a standard uniaxial material tester, showing less than 8% local stiffness error at the site of the lump

    Systematic Design of edical Capsule Robots

    Get PDF
    Medical capsule robots that navigate inside the body as diagnostic and interventional tools are an emerging and challenging research area within medical CPSs. These robots must provide locomotion, sensing, actuation, and communication within severe size, power, and computational constraints. This paper presents the first effort for an open architecture, platform design, software infrastructure, and a supporting modular design environment for medical capsule robots to further this research area

    Design and Implementation of an Instrumented Cane for Gait Recognition

    Get PDF
    Independent mobility is an important aspect of an individual's life and must sometimes be augmented by use of an assistive device such as a wheeled walker or cane following a fall, injury, or functional decline. Physical therapists perform functional gait assessments to gauge the probability of an individual experiencing a fall and often recommend use of a walker, cane, or walking stick to decrease fall risk. Our team has developed a clinical assessment tool centered on a standard walking cane embedded system that can enhance a therapist's observation-based gait assessment with use of additional objective and quantitative data. This system can be utilized to detect timing and speed of cane placement, angular acceleration of the cane, and amounts of weight borne on the cane. This system is designed to assist physical therapists at the basic level in collection of objective data during gait analysis, to facilitate appropriate assistive gait device prescription, to provide patients and therapists feedback during gait training, and to reduce wrist and shoulder injuries with cane usage. However, more importantly, using the plethora of objective data that can be obtained from this cane, automated gait analysis and gait pattern classification can be performed to understand a patient's walking performance

    Intraductal papillary mucinous neoplasia (IPMN) of the pancreas: the pivotal role of MRI for the differential diagnosis and the choice of treatment

    Get PDF
    Macrocystic pancreatic tumors seem to play an important role among neoplastic lesions of the pancreas as they sometimes either show a malignant potential or they already have neoplastic foci inside the cystic tumor. Differential diagnosis is a key factor in comparison with other cystic tumors which are not malignant as Serous Cystic Tumors (SCTs) and Mucinous Cystic Tumors (MCTs). So diagnostic imaging has become more and more important. Since May 2009 we have observed more than 200 patients with cystic lesions of the pancreas. All the patients underwent a CholangioPancreato MagneticResonance (CPMR) after an Ultrasound and/or a CT scan. Then we excluded from our study solid lesions, pseudocysts and tumors with clear signs of malignancy. CPMR was sometimes performed also using a secretine test. Finally 51 patients were evaluated and underwent a follow up programme till now. Among these patients we found 34 Intraductal Papillary Mucinous Neoplasia (IPMN), 7 MCTs and 10 SCTs. As we know that all SCTs show a lobulated septate pattern, differential diagnosis with IPMN is mandatory in order to give to the patient the treatment of choice. CPMR revealed in 32 out of 34 IPMN patients a communication between the lesion and the main pancreatic duct (MPD); so this sign, which is patognomonic of IPMN neoplasia, confirmed the diagnosis. All lesions > than 3 cm were resected by surgery (4 MCTs and 3 IPMN). Definitive histology always confirmed preoperative diagnostic imaging. Now the patients are all disease free at follow up. The other 44 patients undergo CPMR every 6 months following a “wait and see” policy. CPMR seems to be fundamental for the diagnostic screening of IPMN. This is a simple, safe and non invasive procedure which allows an early diagnosis and a better chance of cure for this kind of patients
    corecore