
This is a repository copy of Toward Rapid Prototyping of Miniature Capsule Robots.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/113731/

Version: Accepted Version

Proceedings Paper:
Taddese, A, Beccani, M, Susilo, E et al. (3 more authors) (2015) Toward Rapid Prototyping
of Miniature Capsule Robots. In: Robotics and Automation (ICRA), 2015 IEEE International
Conference on. 2015 IEEE International Conference on Robotics and Automation (ICRA), 
26-30 May 2015, Seattle, WA, USA. Institute of Electrical and Electronics Engineers , pp. 
4704-4709. 

https://doi.org/10.1109/ICRA.2015.7139852

(c) 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers 
or lists, or reuse of any copyrighted components of this work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Toward Rapid Prototyping of Miniature Capsule Robots

Addisu Taddese, Marco Beccani, Ekawahyu Susilo, Péter Völgyesi, Ákos Lédeczi, Pietro Valdastri

Abstract— Minimally invasive robotic surgery techniques are
becoming popular thanks to their enhanced patient bene-
fits, including shorter recovery time, better cosmetic results
and reduced discomforts. Less invasive procedures would be
achieved with the use of Medical Capsule Robots (MCRs). These
devices are characterized by low power requirements and small
dimensions as well as uncompromising safety. MCRs operate
wirelessly in abdominal Minimally Invasive Surgery (MIS) and
Natural Orifice Transluminal Endoscopic Surgery (NOTES) or
in the Gastrointestinal (GI) tract. The design process of MCRs,
however, is expensive and time consuming. A platform for rapid
prototyping MCRs is needed so that MCR researchers can
reduce development costs and spend more time in studying
innovative MCR applications. In this work, we introduce an
open source modular platform geared toward rapid prototyping
MCRs. To speed up the prototyping process, the MCR is
programmed using TinyOS instead of bare-bone C. We present
the hardware architecture of the platform, and the motivation
for using TinyOS. To show the viability of TinyOS, we present
results from an experiment involving sensing, actuation and
wireless communication. This work lays the foundation for our
future goal of building an integrated design environment for
the design, analysis and simulation of MCRs.

I. INTRODUCTION

The use of robotic systems in surgical procedures has

increased steadily with the design of customized medical

robots for specific procedures such as abdominal surgery,

urology, cardiac surgery and eye surgery [1]. In the last

decade, the tendency towards solutions for consumer elec-

tronic devices brought the improvement of miniature cir-

cuits technology, wireless telemetry, battery technology and

more powerful microcontrollers (MCUs). This resulted in

the proliferation of Medical Capsule Robots (MCRs) in

medicine [2]. An MCR is a biocompatible device designed

to operate in the human body, a constrained environment,

and has to fulfill three main requirements: safety, low power

operation and small size. Common tasks of an MCR include

sensing to monitor physiological parameters, communica-

tion to transfer data to an external agent and actuation

for locomotion, therapy delivery and biopsy sampling [2].

MCRs aim to be less invasive and to improve surgeons’

ability in diagnosing, detecting and curing diseases. They

are designed to be inserted into the human body through

natural orifices (e.g., mouth) to operate in the Gastrointestinal

(GI) tract. Other possible areas of application for MCRs

A. Taddese, P. Völgyesi and A. Lédeczi, are with the Institute for Software
Integrated Systems, Department of Electrical Engineering and Computer
Science, Vanderbilt University, Nashville, TN 37212

M. Beccani and P. Valdastri are with the STORM Lab, Department of
Mechanical Engineering, Vanderbilt University, Nashville, TN 37235.
Email: p.valdastri@vanderbilt.edu

are Minimally Invasive Surgery (MIS) [3]–[6] and Natural

Orifice Transluminal Endoscopic Surgery (NOTES) [7].

Since there are no widely available hardware development

platforms for MCRs, research groups are usually forced to

create their own MCRs from the ground up. MCRs have

stringent power and space constraints, thus, researchers have

to spend a lot of time and money on the difficult task of

optimizing their hardware design before they can even begin

work on their research. This amounts to a duplication of

efforts by different research groups, which could be better

applied to the innovation of MCR applications. To address

this issue, the Storm Lab Modular Architecture for Capsules

(SMAC), a first step towards the rapid prototyping of MCRs,

was proposed by the authors in [8]. The SMAC is an open

source platform that provides a set of hardware modules

and associated software libraries for building MCRs. The

platform aimed to consolidate the efforts and best practices

of MCR researchers and to lower the barrier of entry for

research groups that do not have the resources to create

their own hardware. The SMAC was inspired by open

source platforms (e.g., Arduino [9]) outside the medical field

that enable users to rapidly prototype devices and test new

algorithms.

In this work, we improve upon the SMAC by addressing

some of its limitations. The main limitation of the SMAC is

that it requires the user to solder thin wires for connectivity.

While seeming trivial, this limitation inhibits users from

easily experimenting with different composition of modules.

It also prevents standardized MCU pin assignments making

software portability extremely difficult. Furthermore, it in-

creases the occurrence of wiring related failures, which are

difficult to diagnose and fix. The lack of alternative means

of wireless communication is another limitation that is ad-

dressed in this work. Finally, the software libraries provided

by the SMAC platform do not provide a high enough level

of abstraction and therefore do not accommodate researchers

that are not experienced in writing in C/C++.

In this paper, we reconsider the constituents of a good

rapid prototyping platform for MCRs. For a platform to

enable rapid prototyping in the specific domain of MCR

research, it needs to be modular and easily customizable

while being energy efficient and small in size. A hardware

only platform, however, does not achieve the efficiency we

desire with which researchers can prototype their MCR

systems. A modular operating system (OS) with a rich set of

libraries and hardware drivers is required. This OS has to be

energy efficient (effectively utilizing the low power states

of MCU and peripheral devices) while allowing flexible

composition of hardware and software modules. TinyOS,

1



a component based OS used in Wireless Sensor Networks

(WSNs) research, meets all the criteria described.

TinyOS was designed to work with highly resource con-

strained embedded devices used in WSNs as sensor nodes.

The function of these nodes is to collect sensory data and

relay them to a base station. MCRs carry out the same

functionality, but within a different environment, the human

body. While they have different battery life requirements,

with sensor nodes being expected to last weeks or months,

they both strive to conserve as much power as possible.

Finally, they both have limited CPU and memory resources

due to their size and power constraints. The significant

overlap in functionality between MCRs and sensor nodes

suggests that TinyOS would be a suitable OS for MCRs.

Taking this one step further, a rapid prototyping platform

for MCRs needs a comprehensive and focused design envi-

ronment. This design environment would be focused in that

it would be specific to MCRs and would provide additional

tool support and guidance to MCR researchers in their design

process. To create a focused design environment that can

help users analyze and optimize their designs, a model-

based approach is needed. With this in mind, a component

model is built for each hardware module available in the

platform. The model would contain various attributes of the

module that describe its mechanical, electrical and software

characteristics. It would also expose parameters that can

be customized by the user. Users, then, would build their

applications by composing different component models in

a visual workspace. Once the application is composed, the

attributes of the constituent component models would be

used for answering design space questions such as power

consumption, mechanical compatibility, electromagnetic in-

terference, etc. Finally, the design environment will generate

optimized code that can directly be used on the hardware

platform.

From a rapid prototyping standpoint, what is required is

an assortment of reliable hardware modules that can easily

be pieced together to form a functioning unit. The compo-

nent based programming paradigm of TinyOS complements

this notion such that a one-to-one map can be created

between hardware modules and TinyOS components. These

components, if well designed, abstract away the details of

the hardware module and allow users to think in terms of

composition and functionality. Components can also encap-

sulate commonly used MCR behavior and logic to speed up

the creation of prototypes. A collection of such component

models will be made available in the design environment,

which will form a repository that is readily accessible to

users. Component models will be added to this repository as

new hardware modules are created by various researchers.

The repository will serve as a channel of collaboration

fostering design reuse.

The paper is organized as follows: Section II gives an

overview of the hardware platform. Section III makes a case

for using TinyOS as an OS for MCRs while also discussing

how it is the appropriate choice for a model-based design

environment. Sections IV and V discuss experimental results

Fig. 1: A typical MCR system that is composed of the intra-

body device (the MCR), an external wireless transceiver for

data communication and the user interface.

and present conclusions and future works.

II. MCR PLATFORM OVERVIEW

As Fig. 1 indicates, a typical architecture for an MCR

based system consists of the MCR (i.e., the intra-body

device), an external wireless transceiver and a PC, where

the user interface is implemented.

A. MCR Hardware Overview

As shown in Fig. 2, the hardware for the MCR platform

can be functionally classified into different components: an

MCU, modules for wireless communication, sensing and

actuation, and a power source. While the MCU handles the

basic arithmetic, logic, and I/O operations of the MCR, the

wireless transceiver and the sensing and actuation solutions

have to be chosen according to the specific task at hand.

With so many variants of commercially available sensing

and actuation solutions, the MCR hardware aims to provide

to the developer a small package size and low power MCU

with enough peripherals and General Purpose I/O (GPIO)

to interface with the different sensing, actuation and com-

municating modules. The connectivity between the modules

is achieved by flexible circuitry that forms the skeleton on

which modules are mounted, which is then folded to form

the body of the MCR. This connectivity mechanism reduces

the time needed for soldering and assembling the MCR pro-

totype. Modules developed thus far are: an MCU, a 433 MHz

transceiver, two sensing modules (6DOFAG and 8CHADC),

an actuation module (BDCC) and a power module. The

modules are listed in Table I with their dimensions and power

consumption.

1) MCU: The MCU module, as stated above, has to

handle a variety of tasks depending on the MCR application

and therefore its choice is important in the development of

an MCR. In the case of the swallowable MCR, such as

the commercially available Given Imaging Pillcam R© [10],

2



Module Name Functionality Integrated Circuit (IC) Diameter (mm) Thickness (mm) Max Consumption (mA)

MCU Microcontroller MSP430F5528 10.5 3.84 2.32

433 MHz Transceiver Wireless Communication CC1101 10.5 3.94 29.2

6DOFAG Sensing LIS330DLC 10 4.04 0.01

8CHADC Sensing AD7689 10 3.94 3.78

BDCC Actuation (2 ×) A3901 10 3.69 800 mA (Max)

Power Power Management NCP606, LTC4065, LTC2942 10 3.84 500 (Max)

TABLE I: Summary of currently available modules

a maximum diameter of 11 mm is needed for the shell. On

the other hand when MCR are introduced into the abdomen

through surgical trocars they have to fit its diameter. (e.g., the

5-12 Vesaport Plus, Covidien, USA has a diameter of 13 mm)

Therefore, the MCU module has to be small enough in size

to be embedded into the shell, as well as has to operate in

low power modes to increase the lifetime of the device, and

have hardware peripherals to interface with sensors, actuators

and wireless transceivers [2].

For the rapid prototyping hardware platform, we have

chosen the fifth generation MSP430 (MSP430F5528, Texas

Instruments, USA). This MCU comes in a 64 pin, 3.76 mm

by 3.76 mm ultra miniature Ball Grid Array (BGA) package

with many peripherals and low power options. The developed

miniaturized board has a diameter of 10.6 mm and a thick-

ness of 1.6 mm. A dedicated Serial Peripheral Interface (SPI)

communicates with the wireless modules through a separate

connector soldered on top of the MCU module. This connec-

tor enables developers to interface multiple radios with the

MCU module according to their application. Additional SPI

and Inter-Integrated Circuit (I2C) buses on the flexible circuit

are used to interface with sensing and actuation modules.

2) Wireless Communication Modules: An MCR device

needs wireless communication in order to transmit data from

inside the human body. This communication must often be

performed with high data rates for real-time applications,

with transmission power bound to medically safe limits. The

sub 1 GHz carriers have been considered the most suitable

for medical devices because these frequencies have lower

energy absorption in human tissues [11]. Given Imaging is

currently using the 433 MHz carrier for the Pillcam [11],

[12]. Other solutions have also been developed using this

range of frequencies [13]. Currently, our platform supports

a sub 1 Ghz wireless module (CC1101, Texas Instruments,

USA) with a quarter wave wire antenna of 17.3 cm length

(λ = c/f ) folded to fit into the MCR shell. On the other

hand, as shown in [11], [14], the 2.4 GHz carrier, which is

used in ZigBee and Bluetooth applications, can be adopted

for intra-body data communication as well. A base station is

provided for MCR-Personal Computer (PC) wireless com-

munication. It is connected to a PC via Universial Serial

Bus (USB) and contains the same MCU and radio module

as the MCR; therefore, it can be customized as needed.

Furthermore, since most smart phones have embedded Blue-

tooth modules, communicating with an MCR from the phone

would be feasible in the future.

3) Sensing and Actuation Modules: Sensing modules for

the proposed platform consist of commercially available

small package digital or analog sensors such as accelerom-

eters, gyroscopes, pressure sensors and hall effect sensors.

In general, any sensor with a digital interface (SPI or I2C),

operating at a maximum voltage of 3.3 V, can be physically

connected to the MCU and be read by the software. Similarly,

analog sensors can be connected to ADC channels in the

MCU or to external ADC devices with digital interfaces

to the MCU [2]. Regarding actuators, the type used by an

MCR is determined by the target environment for which it is

designed. MCRs in fluid environments may employ propeller

based locomotion [15] while MCRs in dry environments

may mimic crawling [16]. This implies that it is beneficial

to provide multiple digital interfaces (e.g., Pulse Width

Modulation (PWM), GPIO) to the user. At the time of

this writing, sensing and actuation modules that have been

developed consist of a 6 degree of freedom accelerometer and

gyroscope (6DOFAG), an 8 channel 16 bit analog to digital

converter (8CHADC) and a brushed DC motor controller

(BDCC).

As part of this work, new drivers and components for

some devices, including the CC1101 and MSP430F5528,

have been added to TinyOS in order to support our platform.

A small set of additional components for sensors and actu-

ators have also been implemented to conduct our feasibility

experiment.

The source code and the hardware design files are all

open source and can be found at https://github.com/

pillforge. This module library will continually be ex-

panded as new modules are developed by the authors. Users

also have the opportunity to contribute modules thereby

helping other MCR researchers and creating a community

around the platform.

III. MOTIVATION FOR USING TINYOS

1) Efficient use of Resources: As mentioned earlier,

TinyOS was designed to work with highly resource con-

strained embedded devices. Therefore, the efficient use of

resources is central to its design. It is lightweight, only

consuming 400 bytes of memory for the core OS. Since

the composition of components is static and known at

compile time, optimizations can be made that significantly

reduce code size as well as CPU utilization. The task based

concurrency model allows for putting the CPU at a low

power state when the task queue is empty saving battery

power [17].

2) Composability: TinyOS uses a component based pro-

gramming model, which allows hardware modules to be

associated with software components. A component, in

3



Fig. 2: Schematic diagram of the hardware modules in an

MCR. The MCU handles data communication with different

sensing and wireless modules with SPI/I2C interfaces. Actua-

tion is done using GPIO and Pulse Width Modulation (PWM)

signals according to the driver interface for the actuator.

TinyOS, is a software abstraction that encapsulates a service

or accomplishes a specific task. Components are used as

building blocks for not only the application level software but

also the operating system. They expose interfaces, which are

a set of predefined functions inside the component that are

made available externally. Interfaces are “wired” together to

attach function calls made inside one component to the actual

function definition in another. This concept of interfaces

is the key feature of TinyOS that enables composition of

component models inside the design environment.

3) Design Time Analysis Tools: TinyOS has static code

analysis tools as well as runtime checks that help in design-

ing bug free systems. Race conditions, common bugs in mul-

titasking applications, can be detected at compile time by the

TinyOS compiler NesC. This is made possible by TinyOS’s

event based execution model where tasks run to completion

and are atomic to each other. These built-in analysis tools

can be integrated with the design environment so that illegal

or suboptimal design choices can be caught and presented to

the user. Additionally, Safe TinyOS, an extension of TinyOS,

can be employed to add type and out-of-bounds checks with

modest increase in resource usage [18].

4) Communication and Data Collection tools: An impor-

tant task of an MCR is collecting sensory data and forward-

ing them to a base station that is connected to a PC. The

communication protocol among the MCR, the base station,

and the PC determines the reliability and flexibility of the

overall system. TinyOS offers well tested solutions for this

process. Specifically, the Active Message [19] mechanism

can be used for wireless as well as Universal Asynchronous

Receiver/Transmitter (UART) communication. In both cases,

framing and error checking of packets are provided. Addi-

tionally, the mig utility, part of the TinyOS toolchain, can be

used to generate code for the PC in higher level languages

(e.g., Java, Python). The generated code can serialize and

deserialize Active Messages so that packets are presented

as native objects in the respective programming languages.

The design environment will expand on these tools to give

users a powerful Software Development Kit for developing

graphical user interfaces (GUIs) and data analysis tools.

IV. RESULTS

The viability of an MCR is strongly correlated with its

power consumption. Energy sources for MCR are usually

limited to less than 100 mAh due to battery size constraints.

Therefore, an MCR has to conserve its energy in order

to last long enough to perform its task. Typically, MCR

applications consist of a repeating pattern of sensing, wire-

less communication and actuation. Thus, we designed our

experiment to exercise these components separately while

taking current measurements. It is worth noting that, while

actuators consume the most power, they are difficult to use

for a comparative analysis because they are highly applica-

tion specific. We have included them in our experiment in

order to present a fully working MCR. The main focus of the

experiment was to measure the average power consumption

of the platform configured as a typical MCR prototype. Of

particular focus was the wireless communication module

because it is the one component that consumes the most

power (other than the actuators) and is used frequently in

all MCR applications. Additionally, we wanted to measure

the responsiveness of TinyOS and the amount of overhead it

placed on the system.

Our bench-top experiment consisted of the MCR shown

in Fig. 3. It embedded the main MCU module, the 433

MHz Transceiver module, the BDCC actuation module,

the 6DOFAG sensing module and the power module. Two

brushed Direct Current (DC) motors (MK04 S-24, Didel,

Switzerland) were then connected to the BDCC output lines.

As regards to power, a 30 mAh, 3.7 V rechargeable LiPo

battery (Shenzhen Hondark Electronics Co., Ltd., China,

12mm × 10mm × 2mm in size) was used in the power

module which supplied regulated voltage to the rest of

the MCR circuitry. The modules were then mounted on

the flexible circuitry, and the voltage drop across a 10-Ω

resistor placed in series to the positive supply terminal of the

battery was sampled with a digital oscilloscope (Tektronix,

TDS12014C, USA).

The setup also included a base station that was collecting

sensor data from the MCR and sending actuation commands.

The MCR was running a TinyOS application which had

a periodic pattern of: 1) acquiring data from the sensing

module, 2) sending a radio message with the acquired data,

3) waiting for an actuation command from the base station,

4) driving the motors and finally, 5) going back to idle state

until the next data acquisition. The sensor sampling rate,

the duty cycle of the PWM signal for the motor, and the

motor-on time were controlled in the MCR application by

commands sent from the base station.

The plot in Fig. 4 shows a single instance of the pe-

riodic message transmission with the MCR operating at a

transmission power PTX of 10 dBm and a sampling rate of

4



Wireless Communica�on Module

DC Motors

Actua�on ModuleSensing Module

Power Module

Programming 

Interface

MCU Module

Fig. 3: The MCR mounted for the experimental setup composed of modules for the MCU, wireless communication, sensing,

actuation and power.

Fig. 4: Current consumption of the MCR prototype showing

levels of current consumed for different system states.

0.5 Hz, with the motor being actuated for 60ms with a 50%

duty cycle PWM signal. During the time interval TLP the

MCU was either in an idle state or acquiring data from the

sensing module, while the wireless module was inactive in

a low power mode. After the sensor data acquisition, the

MCR turned on the wireless module in TER (2.68 ms) and

transmitted the wireless message at a data rate of 125 Kbps

during TTX (1.8 ms). The transmitted message consisted of

18 bytes, 6 of which were the acquired sensor data while

the rest were the IEEE 802.15.4 header and other overhead

used by the TinyOS Media Access Control (MAC) and

CC1101 physical layer. Once the radio transmission was

completed, the MCU entered reception mode for TRX of 2.9

ms during which it received a message from the base station

that consisted of 6 bytes of payload including the actuation

command, the sampling rate, the motor-on time, TMO, and

the PWM duty cycle. During TMO the wireless module is

is put in low power mode while motors are driven for the

requested time interval. Subsequently the system went back

to the idle state until the next data acquisition.

The average experimental values of current consumption

for each specific state were ILP =1.8 mA, IER = 14.5 mA,

ITX = 26.6 mA with a peak of 28.3 mA, IRX =17 mA,

and IMO = 52.6 mA. Excluding the motor, the average

current consumption for the sensing and communication

tasks was 17.2 mA, which is 49% less than the typical current

consumption exhibited by 2.4 GHz based MCR platforms as

reported in [14]. The result shows that the hardware platform

achieves the level of low power operation required by typical

MCRs applications. It also shows that no significant overhead

was accrued by using TinyOS. The responsiveness of TinyOS

and the performance of the wireless communication module

are on par with other MCR systems that implement real-time

control using bare-bone C (no OS) or using a pseudo-kernel

approach [20].

V. CONCLUSIONS

This paper presents the progresses toward the development

of a comprehensive rapid prototyping platform for develop-

ing MCRs. The aim of the platform is to help the research

community avoid the time and cost required to develop

custom hardware and software for MCRs. The hardware

5



platform presented implements a modular architecture where

various modules are composed together to build an MCR.

The modules are all designed with specific size constraints.

The platform provides uniform connectivity mechanisms to

modules so that users can build their MCRs easily. The

platform uses a single MCU module while providing a

selection of sensor, actuator and wireless communication

modules. Board-level modularity, in general, tends to cause

an overall increase in the complete system size (e.g., due to

the space needed on the PCB for connectors). To mitigate

this problem, the platform uses thinner PCB boards and low

profile connectors. Note, however, that the proposed platform

is meant to be used as an early stage prototyping tool for

the research community (e.g., proof of concept, test benches

and animal trials but not for use on humans) that researchers

can then replace by a custom engineered device once their

research is validated.

In software, TinyOS is used to complement the modularity

of the hardware. It offers low power operation and efficient

resource utilization, which makes it suitable for MCRs.

Furthermore, its component based programming model and

enhanced C dialect increase code reuse, which is a key

requirement for rapid prototyping in software. This also

allows researchers to cooperate with each other by exchang-

ing well tested components in an open source ecosystem.

Since TinyOS was designed for wireless sensor networks,

its feasibility for MCRs was tested with an experiment that

involved sensing, actuation and wireless communication. The

results showed that the TinyOS is a viable and appropriate

OS for MCR software development.

The presented work also lays the foundation for an inte-

grated design and simulation environment. This environment

would use a model-based approach where all hardware

modules and software components are represented by a

component model. Users select models from a library and

build their application by composing the models on a visual

canvas. Preliminary work has been done in creating this

design environment using the Web-based Generic Modeling

Environment (WebGME) [21]. Using this web-based tool,

users can create TinyOS applications by wiring together

components and writing implementations (TinyOS modules)

with a text editor provided by the tool. Users can then

compile their application using a cloud-based build system,

thus avoiding to install their own toolchain. However, more

work is needed to integrate it with the hardware platform

presented in this paper. More research is also needed in

providing higher levels of software abstraction, higher than

those available in TinyOS, so that applications can be built

with minimal editing of textual code.

VI. ACKNOWLEDGMENT

This work was supported by the National Science Founda-

tion under Grants No. CNS-1239355 and IIS-1453129. This

material is also based upon work supported by the National

Science Foundation Graduate Research Fellowship Program

under Grant No. 1445197. Any opinions, findings, and

conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the

views of the National Science Foundation.

REFERENCES

[1] G. Dogangil, B. L. Davies, and F. Rodriguez y Baena, “A review of
medical robotics for minimally invasive soft tissue surgery,” Proc. Inst.

Mech. Eng. H., vol. 224, no. 5, pp. 653–79, 2010.
[2] P. Valdastri, M. Simi, and R. J. Webster III, “Advanced technologies for

gastrointestinal endoscopy,” Annu. Rev. Biomed. Eng., vol. 14, no. 5,
pp. 397–429, 2012.

[3] A. C. Lehman, J. Dumpert, N. A. Wood, L. Redden, A. Q. Visty,
S. Farritor, B. Varnell, and D. Oleynikov, “Natural orifice cholecys-
tectomy using a miniature robot,” Surg. Endosc., vol. 23, no. 2, pp.
260–266, 2009.

[4] G. Tortora, P. Dario, and A. Menciassi, “Array of robots augmenting
the kinematics of endocavitary surgery,” IEEE/ASME Trans. Mecha-

tronics, vol. 19, no. 6, pp. 1821–1829, 2014.
[5] N. A. Patronik, T. Ota, M. A. Zenati, and C. N. Riviere, “A miniature

mobile robot for navigation and positioning on the beating heart,”
IEEE Trans. Robot., vol. 25, no. 5, pp. 1109–1124, 2009.

[6] M. Beccani, C. Di Natali, L. Sliker, J. Schoen, M. Rentschler, and
P. Valdastri, “Wireless tissue palpation for intraoperative detection of
lumps in soft tissue,” IEEE Trans. Bio-Med. Eng., vol. PP, no. 99,
2013.

[7] D. Canes, A. C. Lehman, S. Farritor, D. Oleynikov, and M. M. Desai,
“The future of NOTES instrumentation: flexible robotics and in vivo
minirobots,” J. Endourol., vol. 23, no. 5, pp. 787–792, 2009.

[8] M. Beccani, E. Susilo, C. Di Natali, and P. Valdastri, “SMAC A
Modular Open Source Architecture for Medical Capsule Robots,” Int

J Adv Robot Syst, vol. 11, pp. 1–16, 2014.
[9] “Arduino.” [Online]. Available: www.arduino.cc

[10] “Given imaging,” 2014. [Online]. Available: www.givenimaging.com
[11] P. Valdastri, A. Menciassi, A. Arena, C. Caccamo, and P. Dario,

“An implantable telemetry platform system for in vivo monitoring of
physiological parameters,” IEEE Trans. Inf. Technol. Biomed., vol. 8,
no. 3, pp. 271–8, 2004.

[12] P. Swain, “Wireless capsule endoscopy.” Gut, vol. 52 Suppl 4, pp.
48–50, 2003.

[13] J. Thonè, S. Radiom, D. Turgis, R. Carta, G. Gielen, and R. Puers,
“Design of a 2 mbps fsk near-field transmitter for wireless capsule
endoscopy,” Sensors and Actuators A: Physical, vol. 156, no. 1, pp.
43 – 48, 2009.

[14] P. Valdastri, A. Menciassi, and P. Dario, “Transmission power require-
ments for novel zigbee implants in the gastrointestinal tract,” IEEE

Trans. Bio-Med. Eng., vol. 55, no. 6, pp. 1705–10, 2008.
[15] G. Tortora, P. Valdastri, E. Susilo, A. Menciassi, P. Dario, F. Rieber,

and M. O. Schurr, “Propeller-based wireless device for active capsular
endoscopy in the gastric district,” Minim. Invasive. Ther. Allied.

Technol., vol. 18, no. 5, pp. 280–90, 2009.
[16] P. Valdastri, R. Webster, C. Quaglia, M. Quirini, A. Menciassi, and

P. Dario, “A New Mechanism for Mesoscale Legged Locomotion in
Compliant Tubular Environments,” IEEE Trans. Robot., vol. 25, no. 5,
pp. 1047–1057, Oct. 2009.

[17] P. Levis, “Tinyos: An open operating system for wireless sensor
networks (invited seminar),” in Mobile Data Management, 2006. MDM

2006. 7th International Conference on, 2006, pp. 63–63.
[18] N. Cooprider, W. Archer, E. Eide, D. Gay, and J. Regehr, “Efficient

memory safety for tinyos,” Proceedings of the 5th international

conference on Embedded networked sensor systems (SenSys), 2007.
[19] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser,

“Active messages: a mechanism for integrated communication and
computation,” SIGARCH Comput. Archit. News, vol. 20, no. 2, pp.
256–266, Apr. 1992.

[20] E. Susilo, P. Valdastri, A. Menciassi, and P. Dario, “A miniaturized
wireless control platform for robotic capsular endoscopy using ad-
vanced pseudokernel approach,” Sensor. Actuat. A-Phys., vol. 156,
no. 1, pp. 49–58, 2009.

[21] M. Maroti, R. Kereskenyi, T. Kecskes, P. Volgyesi, and A. Ledeczi,
“Online Collaborative Environment for Designing Complex Compu-
tational Systems,” in The International Conference on Computational

Science (ICCS 2014), Elsevier Procedia. Cairns, Australia: Elsevier
Procedia, 2014.

6


