6,717 research outputs found

    MARKETING FINANCIAL PRODUCTS WITHIN THE ACTIVITY OF INVESTMENT BANKS

    Get PDF
    A production system which produces a large number of items in many steps can be modelled as a continuous flow problem. The resulting hyperbolic partial differential equation (PDE) typically is nonlinear and nonlocal, modeling a factory whose cycle time depends nonlinearly on the work in progress. One of the few ways to influence the output of such a factory is by adjusting the start rate in a time dependent manner.We study two prototypical control problems for this case: i) demand tracking where we determine the start rate that generates an output rate which optimally tracks a given time dependent demand rate and ii) backlog tracking which optimally tracks the cumulative demand. The method is based on the formal adjoint method for constrained optimization, incorporating the hyperbolic PDE as a constraint of a nonlinear optimization problem. We show numerical results on optimal start rate profiles for steps in the demand rate and for periodically varying demand rates and discuss the influence of the nonlinearity of the cycle time on the limits of the reactivity of the production system. Differences between perishable and non-perishable demand (demand vs. backlog tracking) are highlighted

    Chaos in cosmological Hamiltonians

    Full text link
    This paper summarises a numerical investigation which aimed to identify and characterise regular and chaotic behaviour in time-dependent Hamiltonians H(r,p,t) = p^2/2 + U(r,t), with U=R(t)V(r) or U=V[R(t)r], where V(r) is a polynomial in x, y, and/or z, and R = const * t^p is a time-dependent scale factor. When p is not too negative, one can distinguish between regular and chaotic behaviour by determining whether an orbit segment exhibits a sensitive dependence on initial conditions. However, chaotic segments in these potentials differ from chaotic segments in time-independent potentials in that a small initial perturbation will usually exhibit a sub- or super-exponential growth in time. Although not periodic, regular segments typically exhibit simpler shapes, topologies, and Fourier spectra than do chaotic segments. This distinction between regular and chaotic behaviour is not absolute since a single orbit segment can seemingly change from regular to chaotic and visa versa. All these observed phenomena can be understood in terms of a simple theoretical model.Comment: 16 pages LaTeX, including 5 figures, no macros require

    Modelling sulphate stream concentrations in the Black Forest catchments Schluchsee and Villingen

    No full text
    International audienceThe sulphate (SO4) released by mineralisation and desorption from soil can play an important role in determining concentrations of SO4 in streams. The MAGIC model was calibrated for two catchments in the Black Forest, Germany (Schluchsee and Villingen) and SO4 concentrations in the streams for the years 2016 and 2030 were predicted. Special emphasis was placed on the dynamics of soil sulphur (S) pools. At Schluchsee, 90% of soil S is stored in the organic S (Sorg) pool, whereas at Villingen, 54% is in the inorganic (Sinorg) pool. The Villingen stream chemistry was modelled successfully by measured Langmuir isotherm parameters (LIPs) for Sinorg. Schluchsee data could not be modelled satisfactorily using measured or freely adapted LIPs only, as the Sinorg pool would have to be more than five times larger than what was measured. With 60.5 mmolc SO4 m-2 yr-1 as internal soil source by mineralisation and the measured LIPs, stream data was modelled successfully. The modelling shows that in these two catchments pre-industrial concentrations of SO4 in runoff can be reached in the next two decades if S deposition decreases as intended under currently agreed national and international legislation. Sorg is the most likely dominant source of SO4 released at Schluchsee. Mineralization from the Sorg pool must be included when modelling SO4 concentrations in the stream. As the dynamics and the controlling factors of S release by mineralisation are not yet clear, this process remains a source of uncertainty for predictions of SO4 concentrations in streams. Future research should concentrate on dynamics of S mineralisation in the field, such that mathematical descriptions of long-term S-mineralisation can be incorporated into biogeochemical models. Keywords: sulphate release, organic S, mineralisation, acidification, recovery, modelling, MAGIC, catchments, predictions, Germany, fores

    Sensitivity to the KARMEN Timing Anomaly at MiniBooNE

    Get PDF
    We present sensitivities for the MiniBooNE experiment to a rare exotic pion decay producing a massive particle, Q^0. This type of decay represents one possible explanation for the timing anomaly reported by the KARMEN collaboration. MiniBooNE will be able to explore an area of the KARMEN signal that has not yet been investigated
    corecore