64 research outputs found

    Current-Induced Effective Magnetic Fields in Co/Cu/Co Nanopillars

    Full text link
    We present a method to measure the effective field contribution to spin-transfer-induced interactions between the magnetic layers in a trilayer nanostructure, which enables spin-current effects to be distinguished from the usual charge-current-induced magnetic fields. This technique is demonstrated on submicron Co/Cu/Co nanopillars. The hysteresis loop of one of the magnetic layers in the trilayer is measured as a function of current while the direction of magnetization of the other layer is kept fixed, first in one direction and then in the opposite direction. These measurements show a current-dependent shift of the hysteresis loop which, based on the symmetry of the magnetic response, we associate with spin-transfer. The observed loop-shift with applied current at room temperature is reduced in measurements at 4.2 K. We interprete these results both in terms of a spin-current dependent effective activation barrier for magnetization reversal and a spin-current dependent effective magnetic field. From data at 4.2 K we estimate the magnitude of the spin-transfer induced effective field to be 1.5×107\sim 1.5 \times 10^{-7} Oe cm2^2/A, about a factor of 5 less than the spin-transfer torque.Comment: 6 pages, 4 figure

    The nitridation of ZnO nanowires

    Get PDF
    ZnO nanowires (NWs) with diameters of 50 to 250 nm and lengths of several micrometres have been grown by reactive vapour transport via the reaction of Zn with oxygen on 1 nm Au/Si(001) at 550°C under an inert flow of Ar. These exhibited clear peaks in the X-ray diffraction corresponding to the hexagonal wurtzite crystal structure of ZnO and a photoluminescence spectrum with a peak at 3.3 eV corresponding to band edge emission close to 3.2 eV determined from the abrupt onset in the absorption-transmission through ZnO NWs grown on 0.5 nm Au/quartz. We find that the post growth nitridation of ZnO NWs under a steady flow of NH3 at temperatures ≤600°C promotes the formation of a ZnO/Zn3N2 core-shell structure as suggested by the suppression of the peaks related to ZnO and the emergence of new ones corresponding to the cubic crystal structure of Zn3N2 while maintaining their integrity. Higher temperatures lead to the complete elimination of the ZnO NWs. We discuss the effect of nitridation time, flow of NH3, ramp rate and hydrogen on the conversion and propose a mechanism for the nitridation

    Housing metadata for the common physicist using a relational database

    No full text
    SAM was developed as a data handling system for Run II at Fermilab. SAM is a collection of services, each described by metadata. The metadata are modeled on a relational database, and implemented in ORACLE. SAM, originally deployed in production for the D0 Run II experiment, has now been also deployed at CDF and is being commissioned at MINOS. This illustrates that the metadata decomposition of its services has a broader applicability than just one experiment. A joint working group on metadata with representatives from ATLAS, BaBar, CDF, CMS, D0, and LHCB in cooperation with EGEE has examined this metadata decomposition in the light of general HEP user requirements. Greater understanding of the required services of a performant data handling system has emerged from Run II experience. This experience is being merged with the understanding being developed in the course of LHC experience with data challenges and user case discussions. We describe the SAM schema and the commonalities of function and service support between this schema and proposals for the LHC experiments. We describe the support structure required for SAM schema updates, the use of development, integration, and production instances. We are also looking at the LHC proposals for the evolution of schema using keyword-value pairs that are then transformed into a normalized, performant database schema

    Epitaxial Catalyst-Free Growth of InN Nanorods onc-Plane Sapphire

    Get PDF
    We report observation of catalyst-free hydride vapor phase epitaxy growth of InN nanorods. Characterization of the nanorods with transmission electron microscopy, and X-ray diffraction show that the nanorods are stoichiometric 2H–InN single crystals growing in the [0001] orientation. The InN rods are uniform, showing very little variation in both diameter and length. Surprisingly, the rods show clear epitaxial relations with thec-plane sapphire substrate, despite about 29% of lattice mismatch. Comparing catalyst-free with Ni-catalyzed growth, the only difference observed is in the density of nucleation sites, suggesting that Ni does not work like the typical vapor–liquid–solid catalyst, but rather functions as a nucleation promoter by catalyzing the decomposition of ammonia. No conclusive photoluminescence was observed from single nanorods, while integrating over a large area showed weak wide emissions centered at 0.78 and at 1.9 eV

    Ultrafast Dynamics of Lasing Semiconductor Nanowires

    Get PDF
    Semiconductor nanowire lasers operate at ultrafast timescales; here we report their temporal dynamics, including laser onset time and pulse width, using a double pump approach. Wide bandgap gallium nitride GaN , zinc oxide ZnO , and cadmium sul amp; 64257;de CdS nanowires reveal laser onset times of a few picoseconds, driven by carrier thermalization within the optically excited semiconductor. Strong carrier amp; 8722;phonon coupling in ZnO leads to the fastest laser onset time of amp; 8764;1 ps in comparison to CdS and GaN exhibiting values of amp; 8764;2.5 and amp; 8764;3.5 ps, respectively. These values are constant between nanowires of di amp; 64256;erent sizes implying independence from any optical in amp; 64258;uences. However, we demonstrate that the lasing onset times vary with excitation wavelength relative to the semiconductor band gap. Meanwhile, the laser pulse widths are dependent on the optical system. While the fastest ultrashort pulses are attained using the thinnest possible nanowires, a sudden change in pulse width from amp; 8764;5 to amp; 8764;15 ps occurs at a critical nanowire diameter. We attribute this to the transition from single to multimode waveguiding, as it is accompanied by a change in laser polarization
    corecore