607 research outputs found
Strange Hadron Spectroscopy with a Secondary KL Beam at GlueX
We propose to create a secondary beam of neutral kaons in Hall D at Jefferson
Lab to be used with the GlueX experimental setup for strange hadron
spectroscopy. A flux on the order of 3 x 10^4 KL/s will allow a broad range of
measurements to be made by improving the statistics of previous data obtained
on hydrogen targets by three orders of magnitude. Use of a deuteron target will
provide first measurements on the neutron which is {\it terra incognita}.
The experiment will measure both differential cross sections and
self-analyzed polarizations of the produced {\Lambda}, {\Sigma}, {\Xi}, and
{\Omega} hyperons using the GlueX detector at the Jefferson Lab Hall D. The
measurements will span c.m. cos{\theta} from -0.95 to 0.95 in the c.m. range
above W = 1490 MeV and up to 3500 MeV. These new GlueX data will greatly
constrain partial-wave analyses and reduce model-dependent uncertainties in the
extraction of strange resonance properties (including pole positions), and
provide a new benchmark for comparisons with QCD-inspired models and lattice
QCD calculations.
The proposed facility will also have an impact in the strange meson sector by
providing measurements of the final-state K{\pi} system from threshold up to 2
GeV invariant mass to establish and improve on the pole positions and widths of
all K*(K{\pi}) P-wave states as well as for the S-wave scalar meson
{\kappa}(800).Comment: 97 pages, 63 figures, Proposal for JLab PAC45, PR12-17-001; v3 missed
citation in Sec 9 (pg 22
Observation of a narrow structure in p(gamma,K_s)X via interference with phi-meson production
We report observation of a narrow peak structure at ~1.54 GeV with a Gaussian
width sigma=6 MeV in the missing of K_s in the reaction gamma+p = pK_sK_L. The
observed structure may be due to the interference between a strange (or
anti-strange) baryon resonance in the pK_L system and the phi(K_sK_L)
photoproduction leading to the same final state. The statistical significance
of the observed excess of events estimated as the log likelihood ratio of the
resonant signal+background hypothesis and the phi-production based background
only hypothesis corresponds to 5.3 sigma.Comment: Accepted for publication in Physical Review C, 9 pages, 11 figures, 1
table added, revise
MesonNet 2013 International Workshop. Mini-proceedings
The mini-proceedings of the MesonNet 2013 International Workshop held in
Prague from June 17th to 19th, 2013, are presented. MesonNet is a research
network within EU HadronPhysics3 project (1/2012 -- 12/2014). The web page of
the conference, which contains all talks, can be found at
http://ipnp.mff.cuni.cz/mesonnet13Comment: 106 pages, 53 contributions. Mini-proceedings of the MesonNet 2013
International Workshop. Editors: K. Kampf, A. Kupsc, and P. Masjua
Target and beam-target spin asymmetries in exclusive pion electroproduction for Q2>1GeV2 . I. ep→eπ+n
Beam-target double-spin asymmetries and target single-spin asymmetries were measured for the exclusive
π
+
electroproduction reaction
γ
∗
p
→
n
π
+
. The results were obtained from scattering of 6-GeV longitudinally polarized electrons off longitudinally polarized protons using the CEBAF Large Acceptance Spectrometer at Jefferson Laboratory. The kinematic range covered is
1.1
<
W
<
3
GeV and
1
<
Q
2
<
6
GeV
2
. Results were obtained for about 6000 bins in
W
,
Q
2
,
cos
(
θ
∗
)
, and
ϕ
∗
. Except at forward angles, very large target-spin asymmetries are observed over the entire
W
region. Reasonable agreement is found with phenomenological fits to previous data for
W
<
1.6
GeV, but very large differences are seen at higher values of
W
. A generalized parton distributions (GPD)-based model is in poor agreement with the data. When combined with cross-sectional measurements, the present results provide powerful constraints on nucleon resonance amplitudes at moderate and large values of
Q
2
, for resonances with masses as high as 2.4 GeV
Measurement of Inclusive Spin Structure Functions of the Deuteron
We report the results of a new measurement of spin structure functions of the
deuteron in the region of moderate momentum transfer ( = 0.27 -- 1.3
(GeV/c)) and final hadronic state mass in the nucleon resonance region (
= 1.08 -- 2.0 GeV). We scattered a 2.5 GeV polarized continuous electron beam
at Jefferson Lab off a dynamically polarized cryogenic solid state target
(ND) and detected the scattered electrons with the CEBAF Large
Acceptance Spectrometer (CLAS). From our data, we extract the longitudinal
double spin asymmetry and the spin structure function . Our
data are generally in reasonable agreement with existing data from SLAC where
they overlap, and they represent a substantial improvement in statistical
precision. We compare our results with expectations for resonance asymmetries
and extrapolated deep inelastic scaling results. Finally, we evaluate the first
moment of the structure function and study its approach to both the
deep inelastic limit at large and to the Gerasimov-Drell-Hearn sum rule
at the real photon limit (). We find that the first moment varies
rapidly in the range of our experiment and crosses zero at between
0.5 and 0.8 (GeV/c), indicating the importance of the resonance at
these momentum transfers.Comment: 13 pages, 8 figures, ReVTeX 4, final version as accepted by Phys.
Rev.
Photoproduction of phi(1020) mesons on the proton at large momentum transfer
The cross section for meson photoproduction on the proton has been
measured for the first time up to a four-momentum transfer -t = 4 GeV^2, using
the CLAS detector at the Thomas Jefferson National Accelerator Facility. At low
four-momentum transfer, the differential cross section is well described by
Pomeron exchange. At large four-momentum transfer, above -t = 1.8 GeV^2, the
data support a model where the Pomeron is resolved into its simplest component,
two gluons, which may couple to any quark in the proton and in the .Comment: 5 pages; 7 figure
- …
