163 research outputs found

    Testimonianze d'Asia Orientale a Samarcanda: ieri e oggi.

    Get PDF

    Diseases caused by mutations in mitochondrial carrier genes SLC25: A review

    Get PDF
    In the 1980s, after the mitochondrial DNA (mtDNA) had been sequenced, several diseases resulting from mtDNA mutations emerged. Later, numerous disorders caused by mutations in the nuclear genes encoding mitochondrial proteins were found. A group of these diseases are due to defects of mitochondrial carriers, a family of proteins named solute carrier family 25 (SLC25), that transport a variety of solutes such as the reagents of ATP synthase (ATP, ADP, and phosphate), tricarboxylic acid cycle intermediates, cofactors, amino acids, and carnitine esters of fatty acids. The disease-causing mutations disclosed in mitochondrial carriers range from point mutations, which are often localized in the substrate translocation pore of the carrier, to large deletions and insertions. The biochemical consequences of deficient transport are the compartmentalized accumulation of the substrates and dysfunctional mitochondrial and cellular metabolism, which frequently develop into various forms of myopathy, encephalopathy, or neuropathy. Examples of diseases, due to mitochondrial carrier mutations are: combined D-2-and L-2-hydroxyglutaric aciduria, carnitine-acylcarnitine carrier deficiency, hyperornithinemia-hyperammonemia-homocitrillinuria (HHH) syndrome, early infantile epileptic encephalopathy type 3, Amish microcephaly, aspartate/glutamate isoform 1 deficiency, congenital sideroblastic anemia, Fontaine progeroid syndrome, and citrullinemia type II. Here, we review all the mitochondrial carrier-related diseases known until now, focusing on the connections between the molecular basis, altered metabolism, and phenotypes of these inherited disorders

    Prioritize special economic zones establishment through a multi-criteria decision-making approach: A case study on the federal states of Somalia

    Get PDF
    This paper aims to present the analysis results on the feasibility and assessment of Special Economic Zone (SEZ) implementation across the seven Federal States of Somalia. Specifically, the research leads to defining the most important criteria used to evaluate different locations to establish SEZs, understanding the priorities and perceptions of different groups of stakeholders. Moreover, it allows quantitatively assess States’ conditions to reduce the risk of wasted investment or unsuccessful development. Finally, it ranks alternatives based on the stakeholder perspectives and territorial realities. The analysis is based on a multi-criteria decision-making methodology, specifically on the Analytic Hierarchy Process and Technique for Order of Preference by Similarity to Ideal Solution. On a national basis, the most relevant criteria, in the view of stakeholders, are the availability of a skilled workforce. The “economic prosperity” and “financial investments and external aid” are the most critical gaps commonly perceived in all the States. The most applicable State to locate a Special Economic Zone is Banadir Regional Administration, which is perceived to be relatively better off concerning Environmental Conditions, Workforce Skills, Finance and External Aid, and Government Policies and Security. Moreover, the discrepancy between Banadir Regional Administration, but also Somaliland, and the other States is alarming, showing that the more advanced States are the ones that have a higher level of security, population, and also more reliable infrastructure. This information is vital for government and policymakers to support less developed countries' economic and social growth

    An Overview of Mitochondrial Protein Defects in Neuromuscular Diseases

    Get PDF
    none8noNeuromuscular diseases (NMDs) are dysfunctions that involve skeletal muscle and cause incorrect communication between the nerves and muscles. The specific causes of NMDs are not well known, but most of them are caused by genetic mutations. NMDs are generally progressive and entail muscle weakness and fatigue. Muscular impairments can differ in onset, severity, prognosis, and phenotype. A multitude of possible injury sites can make diagnosis of NMDs difficult. Mitochondria are crucial for cellular homeostasis and are involved in various metabolic pathways; for this reason, their dysfunction can lead to the development of different pathologies, including NMDs. Most NMDs due to mitochondrial dysfunction have been associated with mutations of genes involved in mitochondrial biogenesis and metabolism. This review is focused on some mitochondrial routes such as the TCA cycle, OXPHOS, and β-oxidation, recently found to be altered in NMDs. Particular attention is given to the alterations found in some genes encoding mitochondrial carriers, proteins of the inner mitochondrial membrane able to exchange metabolites between mitochondria and the cytosol. Briefly, we discuss possible strategies used to diagnose NMDs and therapies able to promote patient outcomeopenMarra Federica, Lunetti Paola, Curcio Rosita, Lasorsa Francesco Massimo, Capobianco Loredana, Porcelli Vito, Dolce Vincenza, Fiermonte Giuseppe and Scarcia PasqualeMarra, Federica; Lunetti, Paola; Curcio, Rosita; Lasorsa Francesco, Massimo; Capobianco, Loredana; Porcelli, Vito; Dolce, Vincenza; Fiermonte Giuseppe and Scarcia, Pasqual

    Occurrence of Sheraphelenchus sucus (Nematoda: Aphelenchoidinae) and Panagrellus sp. (Rhabditida: Panagrolaimidae) Associated with Decaying Pomegranate Fruit in Italy

    Get PDF
    Two different nematode species were recovered from pomegranate decaying fruit in two localities in Southern Italy: The mycetophagus nematode Sheraphelenchus sucus and a bacterial feeder nematode belonging to the Panagrolaimidae (Rhabditida) family. Morphometrics of the Italian population of S. sucus closely resemble that of the type population, whereas some differences were found when compared with another population from Iran. Molecular characterization of the Italian S. sucus using the 18S rRNA gene, D2-D3 expansion domains of the 28S rDNA, the ITS region, and the partial mitochondrial COI were carried out. Sequences of the 18S rRNA gene, the D2-D3 domains, and the ITS were analyzed using several methods for inferring phylogeny to reconstruct the relationships among Sheraphelenchus and Bursaphelenchus species. The bacterial feeder Panagrellus sp. was characterized at the molecular level only. The D2-D3 expansion domains and ITS sequences of this Italian panagrolaimid were determined. The D2-D3 sequences of the Italian panagrolaimid showed 99% similarity with the corresponding sequence of Panagrellus sp. associated with Rhynchophorus ferrugineus. This is the first report on the tritrophic association of S. sucus and Rhabditida that uses both insects and pomegranate fruit as hosts

    KRAS-regulated glutamine metabolism requires UCP2-mediated aspartate transport to support pancreatic cancer growth

    Get PDF
    The oncogenic KRAS mutation has a critical role in the initiation of human pancreatic ductal adenocarcinoma (PDAC) since it rewires glutamine metabolism to increase reduced nicotinamide adenine dinucleotide phosphate (NADPH) production, balancing cellular redox homeostasis with macromolecular synthesis1,2. Mitochondrial glutamine-derived aspartate must be transported into the cytosol to generate metabolic precursors for NADPH production2. The mitochondrial transporter responsible for this aspartate efflux has remained elusive. Here, we show that mitochondrial uncoupling protein 2 (UCP2) catalyses this transport and promotes tumour growth. UCP2-silenced KRASmut cell lines display decreased glutaminolysis, lower NADPH/NADP+ and glutathione/glutathione disulfide ratios and higher reactive oxygen species levels compared to wild-type counterparts. UCP2 silencing reduces glutaminolysis also in KRASWT PDAC cells but does not affect their redox homeostasis or proliferation rates. In vitro and in vivo, UCP2 silencing strongly suppresses KRASmut PDAC cell growth. Collectively, these results demonstrate that UCP2 plays a vital role in PDAC, since its aspartate transport activity connects the mitochondrial and cytosolic reactions necessary for KRASmut rewired glutamine metabolism2, and thus it should be considered a key metabolic target for the treatment of this refractory tumour

    Integrating Multiple Biomarkers of Fish Health: A Case Study of Fish Health in Ports

    Get PDF
    Biomarkers of fish health are recognised as valuable biomonitoring tools that inform on the impact of pollution on biota. The integration of a suite of biomarkers in a statistical analysis that better illustrates the effects of exposure to xenobiotics on living organisms is most informative; however, most published ecotoxicological studies base the interpretation of results on individual biomarkers rather than on the information they carry as a set. To compare the interpretation of results from individual biomarkers with an interpretation based on multivariate analysis, a case study was selected where fish health was examined in two species of fish captured in two ports located in Western Australia. The suite of variables selected included chemical analysis of white muscle, body condition index, liver somatic index (LSI), hepatic ethoxyresorufin-O-deethylase activity, serum sorbitol dehydrogenase activity, biliary polycyclic aromatic hydrocarbon metabolites, oxidative DNA damage as measured by serum 8-oxo-dG, and stress protein HSP70 measured on gill tissue. Statistical analysis of individual biomarkers suggested little consistent evidence of the effects of contaminants on fish health. However, when biomarkers were integrated as a set by principal component analysis, there was evidence that the health status of fish in Fremantle port was compromised mainly due to increased LSI and greater oxidative DNA damage in fish captured within the port area relative to fish captured at a remote site. The conclusions achieved using the integrated set of biomarkers show the importance of viewing biomarkers of fish health as a set of variables rather than as isolated biomarkers of fish health
    • …
    corecore