191 research outputs found

    One-dimensional surface states on a striped Ag thin film with stacking fault arrays

    Full text link
    One-dimensional (1D) stripe structures with a periodicity of 1.3 nm are formed by introduction of stacking fault arrays into a Ag thin film. The surface states of such striped Ag thin films are studied using a low temperature scanning tunneling microscope. Standing waves running in the longitudinal direction and characteristic spectral peaks are observed by differential conductance (dI/dV) measurements, revealing the presence of 1D states on the surface stripes. Their formation can be attributed to quantum confinement of Ag(111) surface states into a stripe by stacking faults. To quantify the degree of confinement, the effective potential barrier at the stacking fault for Ag(111) surface states is estimated from independent measurements. A single quantum well model with the effective potential barrier can reproduce the main features of dI/dV spectra on stripes, while a Kronig-Penney model fails to do so. Thus the present system should be viewed as decoupled 1D states on individual stripes rather than as anisotropic 2D Bloch states extending over a stripe array.Comment: 10 pages, 6 figure

    Carbon fibre tips for scanning probe microscopy based on quartz tuning fork force sensors

    Full text link
    We report the fabrication and the characterization of carbon fibre tips for their use in combined scanning tunnelling and force microscopy based on piezoelectric quartz tuning fork force sensors. We find that the use of carbon fibre tips results in a minimum impact on the dynamics of quartz tuning fork force sensors yielding a high quality factor and consequently a high force gradient sensitivity. This high force sensitivity in combination with high electrical conductivity and oxidation resistance of carbon fibre tips make them very convenient for combined and simultaneous scanning tunnelling microscopy and atomic force microscopy measurements. Interestingly, these tips are quite robust against occasionally occurring tip crashes. An electrochemical fabrication procedure to etch the tips is presented that produces a sub-100 nm apex radius in a reproducible way which can yield high resolution images.Comment: 14 pages, 10 figure

    Macroscopic Superconducting Current through a Silicon Surface Reconstruction with Indium Adatoms: Si(111)-(R7×\timesR3)-In

    Full text link
    Macroscopic and robust supercurrents are observed by direct electron transport measurements on a silicon surface reconstruction with In adatoms (Si(111)-(R7xR3)-In). The superconducting transition manifests itself as an emergence of the zero resistance state below 2.8 K. IVI-V characteristics exhibit sharp and hysteretic switching between superconducting and normal states with well-defined critical and retrapping currents. The two-dimensional (2D) critical current density J2D,cJ_\mathrm{2D,c} is estimated to be as high as 1.8 A/m1.8 \ \mathrm{A/m} at 1.8 K. The temperature dependence of J2D,cJ_\mathrm{2D,c} indicates that the surface atomic steps play the role of strongly coupled Josephson junctions.Comment: 4 pages, 3 figures; The error in the values of 2D critical current density J2D,cJ_\mathrm{2D,c} was corrected. In the old version, the numbers were wrong by a factor of 100 due to a mechanical error. This does not affect the following analysis and conclusio

    Structural basis of nucleosome assembly by the Abo1 AAA+ ATPase histone chaperone

    Get PDF
    The fundamental unit of chromatin, the nucleosome, is an intricate structure that requires histone chaperones for assembly. ATAD2 AAA+???ATPases are a family of histone chaperones that regulate nucleosome density and chromatin dynamics. Here, we demonstrate that the fission yeast ATAD2 homolog, Abo1, deposits histone H3???H4 onto DNA in an ATP-hydrolysis-dependent manner by in vitro reconstitution and single-tethered DNA curtain assays. We present cryo-EM structures of an ATAD2 family ATPase to atomic resolution in three different nucleotide states, revealing unique structural features required for histone loading on DNA, and directly visualize the transitions of Abo1 from an asymmetric spiral (ATP-state) to a symmetric ring (ADP- and apo-states) using high-speed atomic force microscopy (HS-AFM). Furthermore, we find that the acidic pore of ATP-Abo1 binds a peptide substrate which is suggestive of a histone tail. Based on these results, we propose a model whereby Abo1 facilitates H3???H4 loading by utilizing ATP

    High-speed AFM height spectroscopy reveals µs-dynamics of unlabeled biomolecules

    Get PDF
    Dynamics are fundamental to the functions of biomolecules and can occur on a wide range of time and length scales. Here we develop and apply high-speed AFM height spectroscopy (HS-AFM-HS), a technique whereby we monitor the sensing of a HS-AFM tip at a fixed position to directly detect the motions of unlabeled molecules underneath. This gives Angstrom spatial and microsecond temporal resolutions. In conjunction with HS-AFM imaging modes to precisely locate areas of interest, HS-AFM-HS measures simultaneously surface concentrations, diffusion coefficients and oligomer sizes of annexin-V on model membranes to decipher key kinetics allowing us to describe the entire annexin-V membrane-association and self-assembly process in great detail and quantitatively. This work displays how HS-AFM-HS can assess the dynamics of unlabeled bio-molecules over several orders of magnitude and separate the various dynamic components spatiotemporally
    corecore