13 research outputs found

    Structural Diversity in Bacterial Ribosomes: Mycobacterial 70S Ribosome Structure Reveals Novel Features

    Get PDF
    Here we present analysis of a 3D cryo-EM map of the 70S ribosome from Mycobacterium smegmatis, a saprophytic cousin of the etiological agent of tuberculosis in humans, Mycobacterium tuberculosis. In comparison with the 3D structures of other prokaryotic ribosomes, the density map of the M. smegmatis 70S ribosome reveals unique structural features and their relative orientations in the ribosome. Dramatic changes in the periphery due to additional rRNA segments and extra domains of some of the peripheral ribosomal proteins like S3, S5, S16, L17, L25, are evident. One of the most notable features appears in the large subunit near L1 stalk as a long helical structure next to helix 54 of the 23S rRNA. The sharp upper end of this structure is located in the vicinity of the mRNA exit channel. Although the M. smegmatis 70S ribosome possesses conserved core structure of bacterial ribosome, the new structural features, unveiled in this study, demonstrates diversity in the 3D architecture of bacterial ribosomes. We postulate that the prominent helical structure related to the 23S rRNA actively participates in the mechanisms of translation in mycobacteria

    Adaptive modulation of antibiotic resistance through intragenomic coevolution

    Get PDF
    Bacteria gain antibiotic resistance genes by horizontal acquisition of mobile genetic elements (MGEs) from other lineages. Newly acquired MGEs are often poorly adapted causing intragenomic conflicts; these are resolved by either compensatory adaptation - of the chromosome or the MGE - or reciprocal coadaptation. The footprints of such intragenomic coevolution are present in bacterial genomes, suggesting an important role promoting genomic integration of horizontally acquired genes, but direct experimental evidence of the process is limited. Here we show adaptive modulation of tetracycline resistance via intragenomic coevolution between Escherichia coli and the multidrug resistant plasmid RK2. Tetracycline treatments, including monotherapy or combination therapies with ampicillin, favoured de novo chromosomal resistance mutations coupled with mutations on RK2 impairing the plasmid-encoded tetracycline efflux pump. These mutations together provided increased tetracycline resistance at reduced cost. Additionally, the chromosomal resistance mutations conferred cross-resistance to chloramphenicol. Reciprocal coadaptation was not observed under ampicillin-only or no antibiotic selection. Intragenomic coevolution can create genomes comprising multiple replicons that together provide high-level, low-cost resistance, but the resulting co-dependence may limit the spread of coadapted MGEs to other lineages

    34 Cyo-EM visualization of Mycobacterium 70S ribosome reveals unique structural components at the function sites

    No full text
    The 3D structures of prokaryotic and eukaryotic ribosomes by crystallography and electron microscopy have revealed that they share an evolutionarily conserved core (Schmeing & Ramakrishnan, 2009), but each of the ribosomes contains its own set of specific proteins (or extensions of conserved proteins) and expansion segments of rRNAs (Melnikov et al., 2012). How these differences correlate to function still remains largely unknown. A 3D cryo-EM map of the 70S ribosome from Mycobacterium smegmatis (Msm70S) unveiled striking new structural features (Shasmal & Sengupta, 2012). The core of the Msm70S shows overall similarity with the core of the Escherichia coli 70S ribosome while containing additional mass in the periphery and solvent exposed sides. Some of the Mycobacterium ribosomal proteins are significantly bigger as compared to the E. coli counter parts. The rRNAs also contain extra helices, also revealed by their secondary structures. Most of the additional density of the Msm70S can be largely attributed to the extra helices present in the rRNAs, and extra domains of homologous proteins. One of the most notable features appears in the large subunit near L1 stalk as a structure forming a long helix with its upper end located in the vicinity of the mRNA exit channel (which we term the ‘steeple’). We propose that the prominent helical structure in mycobacterium 23S rRNA participates in modulating different steps of translation, especially the E site tRNA exit mechanism and propagation of mRNA 5′ en

    Anomalous properties of chloroborosilicate glasses in the K2O-BaO-Al2O3-B2O3-SiO2-BaCl2 system

    No full text
    A series of chloroborosilicate glass having composition (in mol%) (100 -x)(42SiO(2)-30B(2)O(3)-20BaO-4K(2)O-4Al(2)O(3))-xBaCl(2) (where x = 0-30) has been prepared by the melt quench technique yielding transparent monolithic glasses up to x = 22.5. Structural investigation by infrared reflection and UV-vis-NIR absorption revealed the bridging action of Cl atom and decrease in non-bridging oxygens with the increase in BaCl2 content. Thermal properties (T (g), T (d) and T (s)) were measured by the dilatometry and softening point measurement. Viscosity was calculated using the Vogel-Fulcher-Tammann equation. Elastic constants were measured by the ultrasonic method. Other mechanical properties like hardness, fracture toughness were also measured. All of the thermal and mechanical properties exhibited a similar trend of anomalous variation as a function of the BaCl2 content, showing maxima at 10 mol% and a sharp increase at 25 mol% BaCl2 content. The anomaly has been explained by the structural point of view with the help of the aforementioned spectroscopic data
    corecore