569 research outputs found
The Dual Meissner Effect and Magnetic Displacement Currents
The dual Meissner effect is observed without monopoles in quenched
QCD with Landau gauge-fixing. Magnetic displacement currents which are
time-dependent Abelian magnetic fields play a role of solenoidal currents
squeezing Abelian electric fields. Monopoles are not always necessary to the
dual Meissner effect. The squeezing of the electric flux means the dual London
equation and the massiveness of the Abelian electric fields as an asymptotic
field. The mass generation of the Abelian electric fields is related to a gluon
condensate of mass dimension 2.Comment: 4 pages, 5 Postscript figures, title modified, some references added,
minor changes made ; Accepted for publication in Phys.Rev.Let
Abelian dominance and the dual Meissner effect in local unitary gauges in SU(2) gluodynamics
Performing highly precise Monte-Carlo simulations of SU(2) gluodynamics, we
observe for the first time Abelian dominance in the confining part of the
static potential in local unitary gauges such as the F12 gauge. We also study
the flux-tube profile between the quark and antiquark in these local unitary
gauges and find a clear signal of the dual Meissner effect. The Abelian
electric field is found to be squeezed into a flux tube by the monopole
supercurrent. This feature is the same as that observed in the non-local
maximally Abelian gauge. These results suggest that the Abelian confinement
scenario is gauge independent. Observing the important role of space-like
monopoles in the Polyakov gauge also indicates that the monopoles defined on
the lattice do not necessarily correspond to those proposed by 't Hooft in the
context of Abelian projection.Comment: 4 pages, 7 figure
A microRNA (mmu-miR-124) prevents Sox9 expression in developing mouse ovarian cells
In mammals, sex differentiation depends on gonad development, which is controlled by two groups of sex-determining genes that promote one gonadal sex and antagonize the opposite one. SOX9 plays a key role during testis development in all studied vertebrates, whereas it is kept inactive in the XX gonad at the critical time of sex determination, otherwise, ovary-to-testis gonadal sex reversal occurs. However, molecular mechanisms underlying repression of Sox9 at the beginning of ovarian development, as well as other important aspects of gonad organogenesis, remain largely unknown. Because there is indirect evidence that micro-RNAs (miRNA) are necessary for testicular function, the possible involvement of miRNAs in mammalian sex determination deserved further research. Using microarray technology, we have identified 22 miRNAs showing sex-specific expression in the developing gonads during the critical period of sex determination. Bioinformatics analyses led to the identification of miR-124 as the candidate gene for ovarian development. We knocked down or overexpressed miR-124 in primary gonadal cell cultures and observed that miR-124 is sufficient to induce the repression of both SOX9 translation and transcription in ovarian cells. Our results provide the first evidence of the involvement of a miRNA in the regulation of the gene controlling gonad development and sex determination. The miRNA microarray data reported here will help promote further research in this field, to unravel the role of other miRNAs in the genetic control of mammalian sex determination
Vacuum type of SU(2) gluodynamics in maximally Abelian and Landau gauges
The vacuum type of SU(2) gluodynamics is studied using Monte-Carlo
simulations in maximally Abelian (MA) gauge and in Landau (LA) gauge, where the
dual Meissner effect is observed to work. The dual Meissner effect is
characterized by the coherence and the penetration lengths. Correlations
between Wilson loops and electric fields are evaluated in order to measure the
penetration length in both gauges. The coherence length is shown to be fixed in
the MA gauge from measurements of the monopole density around the static
quark-antiquark pair. It is also shown numerically that a dimension 2 gluon
operator A^+A^-(s) and the monopole density has a strong correlation as
suggested theoretically. Such a correlation is observed also between the
monopole density and A^2(s)= A^+A^-(s) + A^3A^3(s) condensate if the remaining
U(1) gauge degree of freedom is fixed to U(1) Landau gauge (U1LA). The
coherence length is determined numerically also from correlations between
Wilson loops and A^+A^-(s) and A^2(s) in MA + U1LA gauge. Assuming that the
same physics works in the LA gauge, we determine the coherence length from
correlations between Wilson loops and A^2(s). Penetration lengths and coherence
lengths in the two gauges are almost the same. The vacuum type of the
confinement phase in both gauges is near to the border between the type 1 and
the type 2 dual superconductors.Comment: 13 pages, 22 figures, RevTeX 4 styl
Ionospheric Response to the Total Solar Eclipse of 22 July 2009 as Deduced from VLBI and GPS Data
A total solar eclipse occurred over China at latitudes of about 30 N on the morning of 22 July 2009, providing a unique opportunity to investigate the influence of the sun on the earth's upper ionosphere. GPS observations from Shanghai GPS Local Network and VLBI observations from stations Shanghai, Urumqi, and Kashima were used to observe the response of TEC to the total solar eclipse. From the GPS data reduction, the sudden decrease of TEC at the time of the eclipse, amounting to 2.8 TECU, and gradual increase of TEC after the eclipse were found by analyzing the diurnal variations. More distinctly, the variations of TEC were studied along individual satellite passes. The delay in reaching the minimum level of TEC with the maximum phase of eclipse was 5-10 min. Besides, we also compared the ionospheric activity derived from different VLBI stations with the GPS results and found a strong correlation between them
Venus Express radio occultation observed by PRIDE
Context. Radio occultation is a technique used to study planetary atmospheres
by means of the refraction and absorption of a spacecraft carrier signal
through the atmosphere of the celestial body of interest, as detected from a
ground station on Earth. This technique is usually employed by the deep space
tracking and communication facilities (e.g., NASA's Deep Space Network (DSN),
ESA's Estrack). Aims. We want to characterize the capabilities of the Planetary
Radio Interferometry and Doppler Experiment (PRIDE) technique for radio
occultation experiments, using radio telescopes equipped with Very Long
Baseline Interferometry (VLBI) instrumentation. Methods. We conducted a test
with ESA's Venus Express (VEX), to evaluate the performance of the PRIDE
technique for this particular application. We explain in detail the data
processing pipeline of radio occultation experiments with PRIDE, based on the
collection of so-called open-loop Doppler data with VLBI stations, and perform
an error propagation analysis of the technique. Results. With the VEX test case
and the corresponding error analysis, we have demonstrated that the PRIDE setup
and processing pipeline is suited for radio occultation experiments of
planetary bodies. The noise budget of the open-loop Doppler data collected with
PRIDE indicated that the uncertainties in the derived density and temperature
profiles remain within the range of uncertainties reported in previous Venus'
studies. Open-loop Doppler data can probe deeper layers of thick atmospheres,
such as that of Venus, when compared to closed-loop Doppler data. Furthermore,
PRIDE through the VLBI networks around the world, provides a wide coverage and
range of large antenna dishes, that can be used for this type of experiments
Dual superconductivity and vacuum properties in Yang--Mills theories
We address, within the dual superconductivity model for color confinement,
the question whether the Yang-Mills vacuum behaves as a superconductor of type
I or type II. In order to do that we compare, for the theory with gauge group
SU(2), the determination of the field penetration depth with that of
the superconductor correlation length . The latter is obtained by
measuring the temporal correlator of a disorder parameter developed by the Pisa
group to detect dual superconductivity. The comparison places the vacuum close
to the border between type I and type II and marginally on the type II side. We
also check our results against the study of directly measurable effects such as
the interaction between two parallel flux tubes, obtaining consistent
indications for a weak repulsive behaviour. Future strategies to improve our
investigation are discussed.Comment: 23 pages, 15 figures. Simulations on finer lattices and with
different monopole charges added. Final version to be published in Nuclear
Physics
- …