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The vacuum type of SU(2) gluodynamics is studied using Monte Carlo simulations in maximally
Abelian (MA) gauge and in Landau (LA) gauge, where the dual Meissner effect is observed to work. The
dual Meissner effect is characterized by the coherence and the penetration lengths. Correlations between
Wilson loops and electric fields are evaluated in order to measure the penetration length in both gauges.
The coherence length is shown to be fixed in the MA gauge from measurements of the monopole density
around the static quark-antiquark pair. It is also shown numerically that a dimension 2 gluon operator
A�A��s� and the monopole density has a strong correlation as suggested theoretically. Such a correlation
is observed also between the monopole density and A2�s� � A�A��s� � A3A3�s� condensate if the
remaining U(1) gauge degree of freedom is fixed to U(1) Landau gauge (U1LA). The coherence length
is determined numerically also from correlations between Wilson loops and A�A��s� and A2�s� in MA�
U1LA gauge. Assuming that the same physics works in the LA gauge, we determine the coherence length
from correlations between Wilson loops and A2�s�. Penetration lengths and coherence lengths in the two
gauges are almost the same. The vacuum type of the confinement phase in both gauges is near to the
border between the type 1 and the type 2 dual superconductors.

DOI: 10.1103/PhysRevD.72.074505 PACS numbers: 12.38.Gc, 12.38.Aw, 14.80.Hv
I. INTRODUCTION

It is conjectured that the dual Meissner effect is the color
confinement mechanism [1,2]. The conjecture seems to be
realized if we perform Abelian projection [3] in the maxi-
mally Abelian (MA) gauge [4,5]. The Abelian component
of the gluon field and Abelian monopoles are found to be
dominant [6,7]. The Abelian electric field is squeezed by
solenoidal monopole currents [8–10]. Monopole conden-
sation is confirmed by the energy-entropy balance of the
monopole trajectories [11] and by evaluation of the mono-
pole creation operator [12]. All of these facts support the
conjecture that the color confinement is due to the dual
Meissner effect caused by the monopole condensation.
Numerical calculations show that the vacuum of quenched
SU(2) QCD [SU(2) gluodynamics] is near the border be-
tween the type 1 and the type 2 dual superconductor
[10,13–16], although there are some claims that it is a
superconductor of weakly type 1, see Refs. [9,17,18].
Since the definition of a dual Higgs field is unknown, the
coherence length was calculated using classical Ginzburg-
Landau equations, while the penetration length can be
calculated directly measuring the correlations between
Wilson loops and Abelian or non-Abelian electric fields.

In this paper, we show that the coherence length could be
derived directly from the measurement of the monopole
density around a chromomagnetic flux spanned between a
static quark-antiquark pair. We use the dual Ginzburg-
Landau effective theory of infrared SU(2) gluodynamics
[19,20], evaluate the monopole density around the flux
05=72(7)=074505(14)$23.00 074505
theoretically, and compare it with the value obtained
numerically.

We consider also the dimension 2 gluon operator

A�A��s� �
X
�

��A1
��s��2 � �A2

��s��2�

in the MA gauge. The MA gauge is a gauge which mini-
mizes a functional

P
sA
�A��s�. It is well known that the

off-diagonal gluon fields Ai��s� with i � 1; 2 are small
everywhere except at the sites where monopoles exist.
Hence a strong correlation between A�A��s� and mono-
pole currents jk��s�j is expected. The off-diagonal gluons
have no essential effects on the confinement of fundamen-
tal charge, whereas they can explain the screening of
adjoint charge [21]. If we perform the additional U1LA
gauge fixing after the MA gauge is fixed, the operatorP
s;��A

3
��s��2� can have a physical meaning. It is expected

from the previous results suggesting monopole dominance
[7] that monopole contribution could explain all nonper-
turbative effects in the quantity

A3A3�s� �
X
�

�A3
��s��

2:

Hence we expect that the coherence length can also be
derived from correlations between the Wilson loops and
the dimension 2 operator A�A��s� or between the Wilson
loops and the dimension 2 operator

A2�s� � A�A��s� � A3A3�s�:

We find that the coherence lengths determined from the
-1 © 2005 The American Physical Society
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monopole density and the dimension 2 operators are con-
sistent with each other. We also observe that the penetra-
tion length and the coherence length are almost the same
and we conclude that the vacuum is near the border be-
tween the type 1 and the type 2 dual superconductors in the
MA gauge.

The MA gauge—in which the confinement mechanism
is definitely found to be realized—is just one gauge among
infinite possible gauges. Since the physics should be
gauge-independent, it is important to know the confine-
ment mechanism as well as the type of the vacuum in
another gauge.

This problem has been discussed recently in Ref. [22]
where the Landau (LA) gauge is considered and for
Abelian components the dual Meissner effect is observed.
A magnetic displacement current plays the role of the
solenoidal supercurrent which squeezes the Abelian elec-
tric fields, although the density of DeGrand-Toussaint
monopoles [23] is very small in the LA gauge. The obser-
vation of the dual Meissner effect in the LA gauge suggests
that there exists a gauge-independent definition of the
monopole and, consequently, of the monopole condensa-
tion. There are some attempts to find a gauge-independent
definition of magnetic monopoles [24–26]. Based on the
analogy of the SU(2) gluodynamics in the LA gauge with a
nematic crystal in Ref. , an existence of various topological
defects was suggested. But the definite answer about de-
grees of freedom which are relevant to the confinement in
the LA gauge is not yet obtained.

It has been shown that the nonperturbative part of the
condensate hA2

��s�i is explained completely in terms of
monopoles in compact QED in Landau gauge [28], where
the monopole condensation is known to be responsible for
the confinement of charge [29]. The nonperturbative part of
hA2

��s�i corresponds just to the vacuum expectation value
of a dual Higgs (monopole) field. For gluodynamics the
relevance of the hA2�s�i condensate for confinement is
discussed in Refs. [30,31]. Using the sum rule technique
the mass gap generation due to d � 2 gluon condensate is
discussed in Ref. [32].

In this paper we fix the type of the vacuum also in the LA
gauge. First we measure the penetration length from the
electric field flux as done in the MA gauge. Then we fix the
coherence length from correlations between Wilson loops
and the dimension 2 gluon operator A2�s�, assuming that a
relation between the dimension 2 operator and an unknown
gauge-independent monopole exists in the LA gauge simi-
larly to the MA gauge. We find both the penetration length
and the coherence length in the LA gauge are consistent
with those in the MA gauge. The type of the vacuum is
found to be gauge-independent as it should be. Note that
the LA gauge corresponds to a gauge in which the func-
tional

P
sA

2�s� is minimized. Thus the operator
P
sA

2�s�
could have a physical meaning in LA gauge [31,33] if the
Gribov-copy problem is solved.
074505
II. CONSIDERATION IN THE DUAL GINZBURG-
LANDAU THEORY

A. General dual Ginzburg-Landau picture

The monopole density around the QCD string is de-
scribed very well by the dual superconductor picture
[18,34]. The dual superconductor (or, the dual Ginzburg-
Landau (DGL)) Lagrangian corresponding to SU(2) gluo-
dynamics has the following form [19,20]:

LDGL �
1

4
�@��;B���2 �

1

2
j�@� � igB���j2

� ��j�j2 � �2�2; (1)

where B� is the dual gauge field with the mass mB � g�,
and � is the monopole field with magnetic charge g and
with the mass m� �

������
8�
p

�. In the confinement phase of
SU(2) gluodynamics the monopoles are condensed, j<
�> j � �. The coupling � defines the quartic interaction
of the monopole field �. Below we discuss some general
well-known properties of the Abrikosov-Nielsen-Olesen
[35] vortex in this Abelian model.

There are two mass scales in the discussed Abelian
Higgs model: the coherence length � and the penetration
length �, which are inversely proportional to the masses of
the monopole and the dual gauge boson, respectively:

� �
1

m�
; � �

1

mB
: (2)

The border between the type 1 and type 2 superconductors
is defined as a region in the phase diagram space where
both lengths coincide, � � �.

We are interested in the behavior of the monopoles
around the QCD string. The classical equations of motion
of the DGL model (1) contain a solution corresponding to
the QCD string with a quark and an antiquark at its ends.
The infinitely separated quark and antiquark correspond to
an axially symmetric solution of the string. We consider
the static solution which is parallel to the third direction of
the reference system,

���� � �f���ei�; Bi �
	ij
g

xj
�2 h���;

B3 � 0; B4 � 0;
(3)

where f��� and g��� are dimensionless functions of the

transverse distance � �
����������������
x2

1 � x
2
2

q
to the string, and 	ij is

the standard fully antisymmetric tensor, 	ij � �	ji and
	12 � 1. The azimuthal angle is [36] � � arg�x1 � ix2�.
Both functions f and h of Eq. (3) tend to zero as �! 0 and
they approach the unity as �! 1.

The DGL classical equations of motion are

D2
��B��� 4
�j�j2 � �2�� � 0; (4)

�@2
���� � @�@��B� � gk���; B�; (5)
-2
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where k� is the monopole current given by the following
expression:

k� � =m��	D��B��� � j�j2�@� arg�� gB��; (6)

where D��B� � @� � igB� is the covariant derivative.
In terms of the functions f and h used in the ansatz (3),

the current (6) is given by

ki � ��2
	ijxj
�

f2���
�
�1� h����;

k3 � 0; k4 � 0:

(7)

To derive this equation one should use the relation
@�=@xi � �	ijxj=�2.

In terms of the ansatz (3) the classical equations of
motion (4) are

f00��� �
f0���
�
�
f���

�2 �1� h����
2

�
m2

�

2
�1� f2����f��� � 0; (8)

h00��� �
h0���
�
�m2

B�1� h����f
2��� � 0: (9)

Expanding the profile functions at large �, f��� �
1� �f��� and h��� � 1� �h���, and keeping only linear
terms [37] in Eq. (9) and (8) we get the linearized classical
equations of motion

�f00��� �
�f0���
�
�m2

� 
 �f��� � 0; (10)

�h00��� �
�h0���
�
�m2

B 
 �h��� � 0; (11)

which have the solutions

�f����CfK0�mB��; �h����Chm��K1�m���: (12)

Here Kn are the modified Bessel functions with the follow-
ing asymptotic (x! 1) expansion:
(a) (b

FIG. 1 (color online). The qualitative behavior of (a) the monopo
current component k� around the center of the string as functions of th
of the DGL model.

074505
Kn�x� �
�����
�
2x

r
e�x�1�O�x�1��: (13)

For the string solution with a lowest nontrivial flux the
arbitrary coefficient Cf is always equal to unity, Cf � 1,
while the coefficient Ch is equal to unity in the
Bogomol’nyi limit (i.e., exactly on the border between
the type 1 and type 2 superconductivity), see
Refs. [38,39]. Since the numerical results suggest strongly
that the SU(2) gauge theory is close to the border, we set
Ch � 1 in our qualitative discussion below. Thus, the
functions h and f at large values of � behave as follows:

f��� � 1� I0�m��� � . . . ; (14)

h��� � 1�mB�I1�mB�� � . . . ; (15)

The QCD string is well described by the solutions of the
classical equations of motion of Lagrangian (1). The quali-
tative behavior of the monopole condensate, the electric
field and the angle component k� of the monopole current
around the QCD string are shown in Fig. 1(a)–1(c),
respectively.

Summarizing, the value of the monopole current near
the QCD string (obtained from the classical equations of
motion) is zero in the center of the string and it is also zero
far from the string. The current has a maximum at a certain
distance (which is numerically found to be about 0.2 fm in
the DLG corresponding to SU(2) gluodynamics [18,34]).
The only nonzero component of the classical monopole
current is the angle component k�, while other components
(radial, temporal, and z-component) are zero, kr � 0, k4 �
0, and k3 � 0.

B. Monopole density around QCD string

In the numerical calculations the distributions of the
monopole current around the QCD string � is measured
with the help of the correlation function

kstring
� � hk��0�i� �

hk��0�WCi

hWCi
; @� � C; (16)
) (c)

le condensate �, (b) the electric field Ez and (c) the magnetic
e transverse distance �. The string is given by a classical solution
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FIG. 2 (color online). The naive qualitative behavior of the
density of monopoles around the QCD string.
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where � denotes the string world sheet corresponding to
the minimal surface spanned on the Wilson contour C. The
expectation value (16) is nonzero contrary to Eq. (47)
shown later due to the broken Lorenz invariance because
of the presence of the string.

The monopole density is nonzero in the absence of the
string. We call this value of the density as ‘‘vacuum mono-
pole density,’’ jkvacj. There are two contributions to this
monopole density coming from (i) the long (infrared)
monopole loop which forms the monopole condensate
[40,41] and from (ii) the small monopole loops which
represent the perturbative (ultraviolet) fluctuations.

Very naively, the presence of the string should make the
monopole density bigger: the vacuum contribution gets an
additional contribution coming from the classical (solenoi-
dal) current kclass � kstring. The naive picture is plotted in
Fig. 2.

Thus, naively, the density of the monopoles should in-
crease at some distance from the string. Moreover, naively
one expects that at large transverse distance � from the
string the monopole density, [according to Eqs. (7) and
(13)–(15)] is controlled by the penetration length since
jkstringj � jkvacj � const expf�mB�g.

However, the described qualitative picture definitely
contradicts the numerical results obtained in Ref. [42]
and the results obtained later in the subsequent sections.
In order to investigate the behavior of the monopole den-
sity near the QCD string we study analytically the London
limit in the next subsection.

C. Monopole density in the vicinity of QCD string in the
London limit

The London limit is characterized by the infinitely deep
potential, m� ! 1. The Lagrangian of the DGL model (1)
in this case is
074505
L London
DGL �

1

4
�@��;B���

2 �
�2

2
�@�’� gB��

2: (17)

The QCD string � manifests itself as a singularity in the
phase of the Higgs field:

@��;@��’�x� � 2�	����x�; ��� �
1

2
	���
��
�x�;

(18)

where the string � is parametrized by the vector �x���1; �2�

which depends on the parameters �1;2. The antisymmetric
string current ��� is given by the following expression:

����x� �
Z

d2�
@ �x��;@ �x��
@�1@�2

��4��x� �x�: (19)

The partition function of the model (17) can be rewritten as
a sum over the closed strings [43,44]:

Z �
Z �

��
D’

Z 1
�1

DB expf�
Z

d4LLondon
DGL �B;’�g

�
Z
@��0

D� expf�Sstr���g; (20)

where Sstr is the string action

Sstr��� � 2�2�2
Z

d4x
Z

d4y����x�DmB
�x� y�����y�;

(21)

and DM is the propagator of the massive scalar particle,
��@2 �M2�DM�x� � ��4��x�. The strings are closed:
@���� � 0. The derivation of the right-hand side in
Eq. (20) is easy to make by fixing the unitary gauge, ’ �
0 and, consequently, making the shift B� ! B� �
�1=g�@�’. Then Eq. (18) implies that under the shift
@��;B�� ! @��;B�� � �2�=g�

	���. Finally, having inte-
grated over the Gaussian field B� we get the right-hand
side in Eq. (20).

The sources of the electric flux (i.e., the quarks) running
along the trajectory C are introduced with the help of the
Wilson loops written in terms of the original gauge fields
A�. The quantum average of the Wilson loop WC can be
rewritten as a sum over the strings similarly to Eq. (20):

hWCi �
1

Z

Z
@��jC

D� expf�Sstr��� � Scurrent�j
C�g; (22)

where the strings are spanned on the current jC: @���� �

jC�. The action for the currents is given by the short-ranged
exchange of the dual gauge boson:

Scurrent�jC� �
e2

2

Z
d4x

Z
d4yjC��x�DmB

�x� y�jC��y�;

(23)

where e � 2�=g is the electric charge.
-4
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Below we evaluate the density of the monopole current
in the vicinity of the fixed QCD string. To this end we
assume that the leading contribution of the QCD string is
naturally given by the minimal surface configuration.
Moreover, to avoid boundary (quark) effects, we place
the static quarks at the (spatial) infinities of the axis x3.
Consequently, the quark term (23) does not play any role in
the forthcoming discussion.

Thus, we consider the infinite static string which is
placed along the third direction. The corresponding string
current—calculated from Eq. (19)—is given by the equa-
tion

��� � ���;3��;4 � ��;3��;4���x1���x2�: (24)

The monopole current (6) in the London limit is

k� � �2�@�’� gB��: (25)

Let us consider the following generating functional:

Z��; C� �
Z 1
�1

DB exp
�
�
Z

d4x�LLondon
DGL �B;’��

� ik�C��
�
; (26)

where the singular phase ’� corresponds to the string
position � fixed via Eq. (18). The monopole current in
the presence of the string is given by the variational de-
rivative:

hk��x�i� �
1

Z��; 0�
�

i�C��x�
Z��; C�jC�0: (27)

Analogously, the (squared) monopole density is

hk2
��x�i� �

1

Z��; 0�

�
�

i�C��x�

�
2
Z��; C�

��������C�0
: (28)

Proceeding similarly to the derivation along Eqs. (20)
and (22) we get the following expression for the generating
functional:

Z��;C�� exp
�
�
Z

d4x
Z

d4y
�
g2�4

2
C��x�D

mB
���x�y�C��y�

�2�i�2C��x�D
mB
���x�y�@	�����y�

�
�Sstr���

�
;

(29)

where Dm
���x� is the propagator of the massive vector

boson B�, and the string action is given in Eq. (21).
An evaluation of the vacuum expectation value of the

monopole density (27) gives

kstring
� � hk�i� � �2��2

Z
d4yDmB

���x� y�@	�����y�:

(30)

In particular, in the case of the static string (24) we get the
classical London solution
074505
kstring
i � �2��2	ij

xj
�

@
@�

D�2D�mB ���; i; j � 1; 2;

kstring
3 � 0; kstring

4 � 0;

(31)

where

D�2D�mB �
1

2�
K0�mB�� (32)

is the propagator for a scalar massive particle in two space-
time dimensions. Using Eqs. (31) and (32) we get the
explicit form of the only nonzero component of the sole-
noidal current

kstring
� � �2mBK1�mB��: (33)

The monopoles form a solenoidal current which circulates
around the string in transverse directions.

The squared monopole density is

hk2
�i� � hk�i

2
� � hk

2
�i0; (34)

where

�kquant
� �2 � hk2

�i0 � g2�4DmB
reg�0�

�
g2�4�2

16�2 �O�log��=mB�� (35)

is the quantum vacuum correction. We have regularized the
divergent expression of the vacuum correction by the mo-
mentum cutoff �. The correction is quadratically
divergent.

The total (squared) density of the monopole current is
given by

hk2
�i� � �4M2

BK
2
1�mB�� �

g2�4�2

16�2 �O�log��=mB��;

(36)

where the solenoidal current kstring in the London limit is
given by Eq. (31). This expression is exact in the London
limit (up to logarithmically divergent but distance-
independent corrections).

One may easily see from Eq. (36) that the naive expec-
tation of the density behavior—shown in Fig. 2—is, in
fact, correct in the London limit. Then the total density (in
which the coherence length is zero) must have a maximum
at the distance of the order of the penetration length, 1=mB.
However, the naive picture depicted in Fig. 2 is not valid in
the case of the finite coherence length considered below.

D. Monopole density in the vicinity of QCD string for
finite coherence length

Here we show that, in the real case with a finite coher-
ence length, the naive picture described in the previous
subsection is no more correct. Indeed, in this case the value
of the monopole condensate is varying in the vicinity of the
string, and the (qualitative, at least) generalization of
-5
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Eq. (36) should read as follows:

hk2
�i� � �k

string
� �2 � �kquant

� �2

� �kstring
� �2 �

g2j����j4�2

16�2 � . . . ; (37)

where we have taken into account the behavior of the
monopole condensate by the simple replacement [45] �!
j����j in

�kquant
� �2 � hk2

�i0 �
g2j����j4�2

16�2 � . . . : (38)

Note that the quantum correction to the squared monopole
current in the vicinity of the string (with �� �) is not equal
to the vacuum expectation value measured far outside the
string (�� �).

The quantum correction is much stronger than the clas-
sical one. Therefore the leading behavior of the total
density is controlled by the quantum corrections. The
behavior of the monopole density in the vicinity of the
string is shown in Fig. 3 by the solid line. The various
contributions to the total density are also shown in this
figure (the dashed lines). The theoretical expectation—
shown in Fig. 3—is in agreement with the numerical result
of Ref. [42].

Thus, we expect that the quantum corrections play an
essential role in the case of a finite coherence length.
Moreover, the leading behavior of the monopole density
at large distances is controlled by the coherence length �
(and not by the penetration length �). This fact can be seen
from Eqs. (13)–(15) in the limit �� �:

hjkji���� � �hk2
�i��

1=2��� �
g2�2

16�2

�
1� 4

�������
��
2�

s
e��=�

�
� . . . : (39)
FIG. 3 (color online). The real qualitative behavior of the
density of monopoles around the QCD string.
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As will be discussed in Sec. III, the monopole density
should locally be correlated with the condensate A�A�.
Therefore, the correlation of the monopole density with the
QCD string (39) indicates that the A�A� condensate is also
correlated with the QCD string. The correlation lengths for
the ‘‘monopole density’’–’’string’’ correlations and for the
‘‘A�A� condensate’’–‘‘string’’ correlations should be the
same and equal to the coherence length of the dual super-
conductor:

hA�����A�����i�
hA�����A

�
����i0

� 1� const 
 e��=� � . . . : (40)

with �� �. This is the main result of this section.
III. A�A� CONDENSATE AND ABELIAN
MONOPOLE IN MA GAUGE

The MA gauge is defined by the maximization of the
functional

R�U� �
X
l

Rl�U�; Rl�U� �
1

2
Tr�Ul�3U

y
l �3�; (41)

with respect to the gauge transformations,

max
�2SU�2�

R�U��; U�
x;� � �yxUx;��x��̂: (42)

Using the standard parametrization of the SU�2� link ma-
trices,

Ul �
cos�le

i�l sin�le
i�l

� sin�le�i�l cos�le�i�l

� �
; (43)

we obtain Rl�U� � cos2�l. The maximization makes � as
close to zero as possible.

The off-diagonal fields, U
l � 
 sin�le

i�l correspond

to continuum fields 
A
��x� and continuum quantity
A���x�A

�
��x� corresponds to the lattice quantity sin2�l �

�1� Rl�U��=2. Thus we are able to make an identification
(no summation over � is assumed):

A���x�A
�
��x� �

1

2
�1� Rx;��U��; (44)

where the equality is exact in the naive continuum limit.
The first measurements of the local correlation between

monopoles and the quantity Rl were done in Ref. [46],
where the quantity Rc was used:

Rc�U� �
X
l2@c

Rl�U�: (45)

The summation is going over all links belonging to the
cube c. The distribution of the quantity Rc at the cubes
occupied by monopoles and the cubes, not occupied by
monopoles, is observed. It is shown that at the monopole
position the quantity Rc is generally smaller compared to
-6
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the same quantity in the empty space. Therefore, the
monopoles suppress the quantity Rc and, according to
Eq. (44), the A�A� condensate is enhanced on monopoles.

One can suggest that the correlation of the A�A� con-
densate with the monopole is short-ranged. Indeed, the
correlation of the monopole with the SU(2) action in the
MA gauge is short-ranged, with the characteristic correla-
tion length [47] �Action � 0:05 fm. Since the SU(2) action
involves the off-diagonal components, it seems natural to
suggest that the correlation length �cond of the off-diagonal
components of the gluon field A
 (or, of the A�A� con-
densate) with the monopoles is not much higher than the
�Action. Thus, one can expect that �cond � �Action �
0:05 fm.

Thus the A�A�-monopole density correlation function

C�r� �
hjk��0�jA���r�A���r�i

hjk��0�jihA���0�A���0�i
� 1; (46)

at large r is an exponentially decaying function with char-
acteristic length scale � .

In general there are two types of correlations: along the
monopole current k� and perpendicular to the monopole
current. In Eq. (46) we assume that the distance vector ~r is
perpendicular to the direction of the monopole current,
r�k� � 0 (i.e., the correlations are studied in the trans-
verse to the monopole current directions). Obviously, due
to the scalar nature of the A�A� operator the correlation of
this quantity with the monopole current is zero:

hk��0�A���r�A���r�i � 0: (47)
IV. NUMERICAL RESULTS

A. Method

We use an improved gluonic action found by Iwasaki
[48] which was already implemented in Ref. [22]:

S � 
fC0

X
Tr�plaquette� � C1

X
Tr�rectangular�g:

The mixing parameters are fixed as C0 � 8C1 � 1 and
TABLE I. The best fit parameters correspond
function (49). We indicate the gauge where the
where the quantity is plotted. We set c2 � 0 when

Quantity Gauge Fig. � [fm

hW3E3i MA� U1LA 4 0.143
hjk�j�A�A��ui MA 6 0.060
hWk2i MA 8 0.09(2
hW�A�A��ui MA 9 0.097
hW�A�A���i MA� U1LA 10 0.109
hW3E3i LA 14 0.134
hWA2

�i LA 16 0.122
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C1 � �0:331. We adopt the coupling constant 
 � 1:2
which corresponds to the lattice distance a�
 � 1:2� �
0:0792�2� fm. The lattice size is 324 and we use around
5000 thermalized configurations for measurements. To get
a good signal-to-noise ratio, the APE smearing technique
[49] is used when evaluating Wilson loops W�R; T� �
W0 � iWa�a [50]. The thermalized vacuum configura-
tions are gauge-transformed in the MA��U1LA� gauge
and in the LA gauge. In the MA gauge, we adopted the
simulated annealing method [8,17]. In the LA gauge the
functional

P
s;�Tr�U��s� �Uy��s�� is maximized with re-

spect to all gauge transformations.

B. The MA gauge case

Non-Abelian electric fields are defined from 1� 1 pla-
quette U���s� � U0

���s� � iU
a
���s��

a as done in
Ref. [51]:

Eak�s� �
1

2
�Ua

4k�s� k̂� �U
a
4k�s�� (48)

The static quarks are represented by the Wilson loop
W�R; T�. The measurements of the electric field are mainly
done on the perpendicular plane at the midpoint between
the quark pair. A typical example is shown in Fig. 4. Note
that electric fields perpendicular to the Q �Q axis are found
to be negligible.

The correlation length is determined by an exponential
fit of the electric field (48) for large r regions, where r is a
distance perpendicular to the Q �Q axis. Below we observe
that the electric field as well as other field distributions
around the string can be fitted well by a simple exponential
function

f�r� � c1 exp��r=�� � c2; (49)

where � and c1;2 are the fit parameters. The corresponding
best fit parameters are presented in Table I. The best fitting
curve for the distribution of the electric field is plotted in
Fig. 4 as the solid line. From this fit we fix the penetration
length. Note that the simple exponential function (49) is
expected to work well in the long-range region only.
ing to the fits of various quantities by the
quantity is calculated and the figure number
the best fit value of c2 is consistent with zero.

] c1 c2 �2=d:o:f:

(3) 0.043(2) 0 1.07
6(9) 1.08(3) �0:0103�2� 0.003
) 0.03(2) 0.01430(1) 0.919

(5) 0.039(6) 0.409 66(2) 0.005
(5) 0.11(2) 0.490 64(2) 0.006
(3) 0.046(3) 0 0.65
(3) 0.076(6) 0.740 216(4) 0.008
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Hence, we omit the first two or three points. As the fitting
range shrinks, the best fit value for the length decreases,
then shows a rather stable plateau and then decreases again.
As the central value for the length we choose the value of
the plateau. We consider the change of the best fitted values
as a systematic error. For example, in the case hW3E3i in
Table I, we get

� � 0:143� 0:003�statistical�

� 0:007�systematic from fit-range�

� 0:003�systematic from T dependence�

All error bars of lengths shown in the corresponding figures
include such systematic errors in addition to the statistical
errors.

We show the results for the penetration length in the
MA� U1LA gauge in Fig. 5 for various sizes of Wilson
loops in space directions R. Here we see that the penetra-
tion lengths for both Abelian ~EA and non-Abelian ~E elec-
tric fields are compatible with each other. This is expected
since in MA gauge off-diagonal gluon components are
forced to become as small as possible.

Next we study the correlation between the monopole
density jk��s�j and the operator A�A��s� given by
Eq. (44). The correlation data is plotted in Fig. 6. It is
completely consistent with the theoretical expectation dis-
cussed in Sec. III. In particular, the scale of correlations
between jk��s�j and A�A��s� is about 0.06 fm according to
Table I. This value is pretty close to the scale �Action �
0:05 fm of the monopole-action correlations.

The histograms of the quantity Rc, Eq. (45), are plotted
in Fig. 7. We discriminate between the histograms obtained
at the cubes unoccupied by monopoles and obtained at the
074505
cubes occupied by long infrared monopoles. From this
figure, we can clearly see the enhancement of the A�A�

condensate on the Abelian monopoles.
Let us next derive the coherence length in the MA

gauge. The correlations between the Wilson loop and the
monopole density, and between the Wilson loop and the
quantity A�A��s� are plotted in Fig. 8 and 9, respectively.

In this gauge, the quantity A�A��s�may have a physical
meaning as we have discussed above. If the remaining U(1)
symmetry is gauge fixed by the U(1) Landau gauge, the
-8
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dimension 2 gluon operator A2�s� also acquires a physical
meaning.

In order to study different definitions of the quantity
A�A��s�, we plot the profile of the A�A��s� condensate in
Fig. 10 using another definition

A�A�� �
X
s;�

hf��1
��s��

2 � ��2
��s��

2gi; (50)

which uses the angles ���s� given by the relation U��s� �
exp�i�a��s��

a�. In Fig. 11 we show the coherence length
determined by the use of the quantities A�A�u , A�A�� and
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FIG. 8 (color online). The correlation between the R� T �
6� 6 Wilson loop and the square monopole density in the MA
gauge. The solid line denotes the best exponential fit by the
function (49) with the best fit parameters given in Table I.
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k2. From Fig. 11, we conclude that within the error bars
these coherence lengths coincide.

The coherence lengths determined from the dimension 2
operator A2�s� are shown in Fig. 12. It is interesting to
determine a nonperturbative content of the gluon operator.
To this end we measure only the monopole contributions to
the dimension 2 gluon operator A2�s� after the MA gauge,
and, subsequently, the additional U(1) Landau gauge are
fixed. This way of defining of the nonperturbative quanti-
ties is justified because it is known that in the MA gauge
the monopole contributions are responsible for essential
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FIG. 10 (color online). The same as in Fig. 8 but for the
correlation between the R� T � 6� 6 Wilson loop and the
A�A�� condensate (50) in the MA� U1LA gauge.
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nonperturbative physics. The monopole contribution to the
coherence lengths is plotted also in Fig. 12.

It is very interesting that the values of the coherence
lengths are almost the same as those of the penetration
lengths as shown in Fig. 13.

C. The LA gauge case

The Abelian electric fields EaAi are defined in the LA
gauge similarly to the MA gauge. We use the Abelian
plaquettes �a���s� defined with the help of the link variables
�a��s�

�a���s� � �a��s� � �
a
��s� �̂� � �

a
��s� �̂� � �

a
��s�; (51)

where �a��s� is given by U��s� � exp�i�a��s��
a�.

First let us discuss a determination of the electric fields
around a pair of a static quark and an antiquark in the LA
gauge. Since the confining behavior of the chromoelectric
string is seen for large enough quark-antiquark distances R,
we have performed the measurements for various R and T.
A typical example is shown in Fig. 14.

The R dependence of the penetration lengths is shown in
Fig. 15. The maximum quark distance in Fig. 15 is R �
0:71 fm which may not be large enough to see the confin-
ing string behavior. On the other hand, we see a small but
clear discrepancy between the penetration lengths of the
Abelian ~EA and the non-Abelian ~E electric fields. The
authors think it is caused by too small of a distance
between the quark and antiquark so that the different
effects from the Coulomb interaction may still play a role.

Now let us discuss the measurements of the coherence
lengths. As it was explained above, at least in the LA
gauge, the operator A2

� (or its square-root) is physically
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FIG. 14 (color online). The non-Abelian ~E electric field
profile in the Landau gauge obtained with the help of the
Wilson loop W�R� T � 6� 6�. The solid line denotes the
best exponential fit by the function (49) with the best fit pa-
rameters given in Table I.
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relevant and may have information about properties of a
dual Higgs field characterizing the QCD vacuum. Hence
we expect that the coherence length can be measured with
the help of A2�s�. The dimension 2 gluonic operator used
here is [52]

A2�s� �
X4

��1

X3

a�1

��a��s��2: (52)

In Fig. 16 we show a typical example of the A2
� profile

around the string where we have adopted the lattice defi-
nition (52) for the operator A2�s�. This is very exciting,
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FIG. 16 (color online). The profiles for the dimension 2 gluon
operator in the Landau gauge around R� T � 6� 6 Wilson
loop. The solid line denotes the best exponential fit by the
function (49) with the best fit parameters given in Table I.
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since the behavior of the profile is just what we expect from
a profile of a Higgs field.

We plot the R dependence of the coherence lengths and
the penetration lengths in Fig. 17. It is very interesting that
the values of the coherence lengths are almost the same as
those for the penetration lengths of non-Abelian ~E electric
field.

D. Comparison between MA gauge and LA gauge

In order to consider the gauge-(in)dependence of the
dual superconductor picture, we show in Fig. 18 the pene-
tration lengths determined in the MA� U1LA gauge and
in the LA gauge. We also plot the coherence lengths in
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FIG. 18 (color online). The penetration lengths of the non-
Abelian electric field in the Landau gauge and in the MA�
U1LA gauge for various R.
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Fig. 19. From these figures, we observe that the coherence
and correlation lengths calculated in different gauges co-
incide with each other.

Note that the observed equivalence of the correlations
lengths is a nontrivial fact. Indeed, we measure a gauge-
variant operator A2 in the fixed gauges. In the functional
integration approach this measurement is equivalent to the
calculation of the correlation between the gauge-invariant
Wilson loop and the gauge-invariant (‘‘gauge-singlet’’)
piece of the A2 operator in a particular gauge. Although
the A2 operator is the same in various gauges, the gauge-
invariant piece of it is not. Thus one can naturally expect
that we should obtain different results for correlation
lengths in different gauges. The fact that the lengths are
found to be almost the same is thus nontrivial.

E. The vacuum type and the Ginzburg-Landau
parameter

The Ginzburg-Landau parameter, i.e., the ratio of pene-
tration length and the coherence length, is important to fix
the vacuum type. Since systematic errors coming from the
choice of the fit-range and the finite T effect are large in
comparison with statistical errors, we estimate the
Ginzburg-Landau parameter and its error carefully. A R �
7 example of the fit-range dependence as well as T depen-
dence in the MA(LA) gauge is plotted in Fig. 20 (Fig. 21).
The T dependence is not so big, but the fit-range depen-
dence is large. If we determine the parameters from the
data with r � 3a, R � 7, T � 7 in the MA gauge and with
r � 3a, R � 7, T � 6 in the LA gauge, we get


MA � 1:04�
0:07statistic��
0:1systematic�; (53)


LA � 1:04�
0:05statistic��
0:1systematic�: (54)

As for the R dependence of 
, we have studied R � 8 cases
also. In the case of R � 8, the Ginzburg-Landau parame-
074505
ters obtained in both gauges are consistent with Eq. (53)
and (54) within the error bar. The data for R> 9 are too
noisy to get definite results. If this situation holds for larger
R, we can conclude the type of the vacuum is near the
border of the type 1 and the type 2. This is consistent with
the recent results of Ref. [16].

V. CONCLUSIONS

We have obtained the following:
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(1) T
he coherence lengths of the vacuum of the SU(2)
gluodynamics can be fixed by means of correlations
between Wilson loops and the monopole density in
the MA gauge. The correlations between Wilson
loops and dimension 2 operators could determine
the coherence lengths.
(2) T
he coherence lengths measured in the maximal
Abelian gauge and in the Landau gauge are all
consistent with each other.
(3) T
he penetration lengths obtained in the MA gauge
are in agreement with those calculated in the LA
gauge.
(4) T
he type of the vacuum in both gauges seems to be
near the border between type 1 and type 2. The
074505-13
Ginzburg-Landau parameters in both gauges coin-
cide with each other.
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