276 research outputs found

    Anisotropic Solutions in Symmetric Teleparallel f(Q)f\left( Q\right)-theory: Kantowski-Sachs and Bianchi III LRS Cosmologies

    Full text link
    We investigate the existence of anisotropic self-similar exact solutions in symmetric teleparallel f(Q)f\left( Q\right)-theory. For the background geometry we consider the Kantowski-Sachs and the Locally Rotationally Symmetric Bianchi type III geometries. These two anisotropic spacetimes are of special interest because in the limit of isotropy they are related to the closed and open Friedmann--Lema\^{\i}tre--Robertson--Walker cosmologies respectively. For each spacetime there exist two distinct families of flat, symmetric connections, which share the symmetries of the spacetime. We present the field equations, and from them, we determine the functional form of the f(Q)f\left( Q\right) Lagrangian which yields self-similar solutions. We initially consider the vacuum case and subsequently we introduce a matter source in terms of a perfect fluid. Last but not least, we report some self-similar solutions corresponding to static spherically symmetric spacetimes.Comment: 31 pages, no figures, Latex2e source fil

    Be well: A systems-based wellness intervention using mindfulness in the workplace – A case study

    Get PDF
    Introduction: Healthy work environments are essential in determining improved well-being of Australians. Job stress has been identified as a significant factor in psychological distress. This study evaluated the effect of introducing a systems-based workplace wellness programme using mindfulness in the workplace. Methods: The programme ‘Be Well’ was introduced as part of a systems-based approach to workplace health promotion, and evaluated using sick leave as a proxy for workplace stress, and the stress satisfaction offset score to determine the degree of change in stress and satisfaction. Results: There was significant reduction in sick leave (2014 vs. 2012) (p\u3c.001), and significant improvement in stress satisfaction offset score (p\u3c.05). Logistic regression analysis identified the programme components most predictive of reduced stress and higher job satisfaction. Conclusion: The impacts of a systems-based mindfulness workplace wellness intervention, show significant improvements in workers’ sick leave and changes to stress and satisfaction scores. This study has implications for sector-wide policy change in the workplace

    Dancing to the Partisan Beat: A First Analysis of Political Communication on TikTok

    Full text link
    TikTok is a video-sharing social networking service, whose popularity is increasing rapidly. It was the world's second-most downloaded app in 2019. Although the platform is known for having users posting videos of themselves dancing, lip-syncing, or showcasing other talents, user-videos expressing political views have seen a recent spurt. This study aims to perform a primary evaluation of political communication on TikTok. We collect a set of US partisan Republican and Democratic videos to investigate how users communicated with each other about political issues. With the help of computer vision, natural language processing, and statistical tools, we illustrate that political communication on TikTok is much more interactive in comparison to other social media platforms, with users combining multiple information channels to spread their messages. We show that political communication takes place in the form of communication trees since users generate branches of responses to existing content. In terms of user demographics, we find that users belonging to both the US parties are young and behave similarly on the platform. However, Republican users generated more political content and their videos received more responses; on the other hand, Democratic users engaged significantly more in cross-partisan discussions.Comment: Accepted as a full paper at the 12th International ACM Web Science Conference (WebSci 2020). Please cite the WebSci version; Second version includes corrected typo

    Medical Imaging Utilization Trends in Radiation Oncology over the Past Decade

    Get PDF
    Purpose/Objective(s): We quantify the increase in use of pre-treatment imaging and verification imaging in radiation oncology over the past decade. We also quantify the trend towards hypofractionation, which has partially led to increased imaging. Materials/Methods: The pre-treatment and verification imaging data used are from a single, tertiary, university-affiliated cancer center. Pre-treatment imaging was defined as magnetic resonance imaging (MRI), positron emission tomography (PET) and four-dimensional computed tomography (4DCT). Verification imaging was defined as cone-beam computed tomography (CBCT). All treatment approved plans were included from 2012 to 2021. Data extraction was performed using custom scripts interfacing with the treatment planning system (TPS) and patient information system. All registered image-sets of planning CT images with either advanced pre-treatment advanced imaging or verification images in the TPS were included. Hypofractionation sub-analysis was performed according to plans above and below 4 Gy per fraction that received a combination of pre-treatment and verification imaging. Results: Between 2012 and 2021, a total of 42,214 plans were included. In 2021, MRI, PET, and 4DCT pre-treatment imaging modalities were used for 14%, 5%, and 3% of patients, respectively, which was an increase from 5%, 2%, and 0%, in 2012. In 2021, 55% of patients received CBCT for verification imaging compared to only 2% of patients in 2012. In the sub-analysis, cohort receiving greater than or equal to 4 Gy per fraction from 2012 to 2021, the percent of patients receiving one of MRI or PET for pre-treatment imaging and CBCT guidance for verification imaging increased from 1% to 22%. For the cohort receiving less than 4 Gy per fraction, there was an increase from 2012 to 2021 of 0% to 14% of patients receiving at least one of MRI or PET pretreatment imaging and CBCT for verification imaging. Table 1: Annual use of advanced pre-treatment, verification imaging, hypofractionation, and associated combination imaging shown. Entries indicate the percent (%) of patients per year with the imaging modality used in their treatment. Conclusion: An increase in the adoption of advanced medical imaging was observed in standard of care treatments over the past 10 years. Imaging utilization continues to increase as clinical trial evidence matures. Further analysis could focus on the gap between desired standard of care for patients and the current offerings as well as the increase in capital and human resource requirement for implementation of these advancements

    Characterization of proteome-size scaling by integrative omics reveals mechanisms of proliferation control in cancer.

    Get PDF
    Almost all living cells maintain size uniformity through successive divisions. Proteins that over and underscale with size can act as rheostats, which regulate cell cycle progression. Using a multiomic strategy, we leveraged the heterogeneity of melanoma cell lines to identify peptides, transcripts, and phosphorylation events that differentially scale with cell size. Subscaling proteins are enriched in regulators of the DNA damage response and cell cycle progression, whereas super-scaling proteins included regulators of the cytoskeleton, extracellular matrix, and inflammatory response. Mathematical modeling suggested that decoupling growth and proliferative signaling may facilitate cell cycle entry over senescence in large cells when mitogenic signaling is decreased. Regression analysis reveals that up-regulation of TP53 or CDKN1A/p21CIP1 is characteristic of proliferative cancer cells with senescent-like sizes/proteomes. This study provides one of the first demonstrations of size-scaling phenomena in cancer and how morphology influences the chemistry of the cell

    DEVELOPING A METHODOLOGICAL FRAMEWORK FOR THE PARTICIPATORY MEASUREMENT OF SUSTAINABILITY

    Get PDF
    The measurement of sustainability can provide significant information in order to plan and implement environmental policies. Several methods have been proposed in the literature in order to select the appropriate indicators along with a variety of techniques for their measurement. These methods are often divided in two main categories: a) a top-down approach where the selection of sustainability indicators is often based on the decision of scientists and policy-makers and b) a bottom-up approach where local stakeholders influence the selection and the measurement of indicators. In this paper we propose a methodological framework which allows the selection of sustainability indicators based on scientific research but at the same time allows citizens to influence both the selection of indicators and their measurement. The benefits of the specific methodological framework are two: a) to incorporate in different stages of the measurement the opinions of local stakeholders, b) to assist in policy decision-making through the assessment of the current situation of sustainability

    The Impact of Implementing Hypofractionation Prescription Regimens and Modernizing Delivery Technique on Treatment Resources in Breast Radiotherapy

    Get PDF
    Purpose/Objective(s): To determine the change in treatment resources due to the implementation of hypofractionated prescription regimen. Materials/Methods: All patients between January 1, 2012 and December 31, 2021 receiving curative intent breast radiotherapy at a tertiary cancer center were included. Plan and patient data were extracted from the patient database with the treatment planning system and direct database query. Treatment plan categorization was completed using data elements to include only curative intent. Treatment plans for seroma boost or supraclavicular irradiation were excluded to ensure this analysis did not double-count regional nodal irradiation contribution or confound boost with hypofractionation. Treatment delivery time is recorded in the database for each patient treatment delivered. Average patient treatment time per year was estimated by multiplying the average fractions each year by average time in the same year. The standard fractionation regimens (95% of patients) are 42.56 Gy in 16, 40 Gy in 16, 27 Gy in 5 (accelerated partial breast irradiation), and 26 Gy in 5 (FAST-Forward). In the analysis, implementation milestones are indicated for new prescription regimens and delivery technique changes including deep inspiration breath hold (DIBH) for left-sided patient treatments and daily verification imaging. Results: A total of 6505 patients were included. Table 1 details the total number of patients per year, the average number of fractions treated per patient, and the average treatment time of each patient plan. The average total fractions per treatment decreased from 17.5 in 2012 to 10.9 in 2021. The average treatment delivery time increased from 12.9 minutes to 21.4 minutes. Conclusion: In considering total treatment resources, the interplay between hypofractionation and modernization delivery techniques is complex. The impact of hypofractionation reduced the average number of fractions but total treatment resources are offset with the implementation of modern treatment delivery techniques. Hypofractionated prescription regimens reduce the time and travel commitment required of patients on an individual basis, contributing to person-centered care

    Nonlinear force-free reconstruction of the global solar magnetic field: methodology

    Full text link
    We present a novel numerical method that allows the calculation of nonlinear force-free magnetostatic solutions above a boundary surface on which only the distribution of the normal magnetic field component is given. The method relies on the theory of force-free electrodynamics and applies directly to the reconstruction of the solar coronal magnetic field for a given distribution of the photospheric radial field component. The method works as follows: we start with any initial magnetostatic global field configuration (e.g. zero, dipole), and along the boundary surface we create an evolving distribution of tangential (horizontal) electric fields that, via Faraday's equation, give rise to a respective normal field distribution approaching asymptotically the target distribution. At the same time, these electric fields are used as boundary condition to numerically evolve the resulting electromagnetic field above the boundary surface, modelled as a thin ideal plasma with non-reflecting, perfectly absorbing outer boundaries. The simulation relaxes to a nonlinear force-free configuration that satisfies the given normal field distribution on the boundary. This is different from existing methods relying on a fixed boundary condition - the boundary evolves toward the a priori given one, at the same time evolving the three-dimensional field solution above it. Moreover, this is the first time a nonlinear force-free solution is reached by using only the normal field component on the boundary. This solution is not unique, but depends on the initial magnetic field configuration and on the evolutionary course along the boundary surface. To our knowledge, this is the first time that the formalism of force-free electrodynamics, used very successfully in other astrophysical contexts, is applied to the global solar magnetic field.Comment: 18 pages, 5 figures, Solar Physic

    Single-cell transcriptomics identifies an effectorness gradient shaping the response of CD4+ T cells to cytokines.

    Get PDF
    Naïve CD4+ T cells coordinate the immune response by acquiring an effector phenotype in response to cytokines. However, the cytokine responses in memory T cells remain largely understudied. Here we use quantitative proteomics, bulk RNA-seq, and single-cell RNA-seq of over 40,000 human naïve and memory CD4+ T cells to show that responses to cytokines differ substantially between these cell types. Memory T cells are unable to differentiate into the Th2 phenotype, and acquire a Th17-like phenotype in response to iTreg polarization. Single-cell analyses show that T cells constitute a transcriptional continuum that progresses from naïve to central and effector memory T cells, forming an effectorness gradient accompanied by an increase in the expression of chemokines and cytokines. Finally, we show that T cell activation and cytokine responses are influenced by the effectorness gradient. Our results illustrate the heterogeneity of T cell responses, furthering our understanding of inflammation

    Triggering an eruptive flare by emerging flux in a solar active-region complex

    Full text link
    A flare and fast coronal mass ejection originated between solar active regions NOAA 11514 and 11515 on July 1, 2012 in response to flux emergence in front of the leading sunspot of the trailing region 11515. Analyzing the evolution of the photospheric magnetic flux and the coronal structure, we find that the flux emergence triggered the eruption by interaction with overlying flux in a non-standard way. The new flux neither had the opposite orientation nor a location near the polarity inversion line, which are favorable for strong reconnection with the arcade flux under which it emerged. Moreover, its flux content remained significantly smaller than that of the arcade (approximately 40 %). However, a loop system rooted in the trailing active region ran in part under the arcade between the active regions, passing over the site of flux emergence. The reconnection with the emerging flux, leading to a series of jet emissions into the loop system, caused a strong but confined rise of the loop system. This lifted the arcade between the two active regions, weakening its downward tension force and thus destabilizing the considerably sheared flux under the arcade. The complex event was also associated with supporting precursor activity in an enhanced network near the active regions, acting on the large-scale overlying flux, and with two simultaneous confined flares within the active regions.Comment: Accepted for publication in Topical Issue of Solar Physics: Solar and Stellar Flares. 25 pages, 12 figure
    • …
    corecore