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Characterization of proteome-size scaling by integrative
omics reveals mechanisms of proliferation control
in cancer
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Jyoti Choudhary, Malin Pedersen, Chris Bakal*

Almost all living cells maintain size uniformity through successive divisions. Proteins that over and underscale
with size can act as rheostats, which regulate cell cycle progression. Using a multiomic strategy, we leveraged
the heterogeneity of melanoma cell lines to identify peptides, transcripts, and phosphorylation events that dif-
ferentially scale with cell size. Subscaling proteins are enriched in regulators of the DNA damage response and
cell cycle progression, whereas super-scaling proteins included regulators of the cytoskeleton, extracellular
matrix, and inflammatory response. Mathematical modeling suggested that decoupling growth and prolifera-
tive signalingmay facilitate cell cycle entry over senescence in large cells whenmitogenic signaling is decreased.
Regression analysis reveals that up-regulation of TP53 or CDKN1A/p21CIP1 is characteristic of proliferative
cancer cells with senescent-like sizes/proteomes. This study provides one of the first demonstrations of size-
scaling phenomena in cancer and how morphology influences the chemistry of the cell.
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INTRODUCTION
Eukaryotic cells vary widely in size; there is a billion-fold difference
in cell volume between Xenopus oocytes [~1-mm diameter, (1)=]
and phytoplankton (~1 μm) (2). As cell size directly affects nutrient
acquisition and consumption, diffusive processes, and intracellular
protein concentrations, this results in a spectrum of biology (3, 4).

Although notable differences in size are observed when compar-
ing between different cell types, size distributions within proliferat-
ing cell types show only modest variance or size “uniformity” (5)
[coefficients of variation (CVs) typically 0.1 to 0.3] (6). The size ho-
mogeneity of proliferating cell populations implies the existence of
size checkpoints during proliferation, which act to coordinate cell
cycle progression and the acquisition of cell mass (3, 5). To maintain
a stable size distribution across a population, a checkpoint system
can measure the size of individual cells with molecular “rulers”
(7). Measurements are then coupled to the speed of the division
cycle and the acquisition of mass. Such a system would “penalize”
cells that deviate from the target volume (a “sizer” system), acceler-
ating or diminishing the cell proliferation rate.

Other mechanisms of size determination have been documented
that do not inherently depend on cell size measurements, such as
the “adder” or “timer” models where a fixed amount of cell mass
is added per cycle (3, 8). However, recent studies allude to similarity
between sizer and adder/timer systems, with modest errors in sizer
function leading to adder-like behavior (9).

Several studies have identified molecular mechanisms of how
size measurements are coupled to proliferation and/or growth. In
budding yeast, a type of ruler appears to consist of a mechanism
where the concentration of a cell cycle progression inhibitor,
Whi5, becomes diluted with respect to the activator, Cln3, as cells
grow larger, allowing cell cycle progression only at a critical size (7,
10). The set point appears to be, in part, determined by the

concentration of Whi5 relative to the number of DNA binding
sites for the cell cycle activator SBF (11).

Recently, it has been demonstrated that RB1 (an ortholog of
Whi5) may have a role in mammalian size control. RB1 concentra-
tion subscales with size across the cell cycle, meaning that in smaller
newly born daughters, the activity of RB1 may exceed that of its
agonist, cyclin D1 (CCND1). CCND1 scales with size, and thus as
cells grow, there is a point at which the activity of CCND1 exceeds
that of RB1, and the cell commits to proliferation (12). In normal
cells, CCND1 levels are a function of mitogen signaling and trans-
lational activity (13). Thus, in normal mammalian cells, cells meet
the RB1:CCDN1 set point for proliferation, by synthesizing CCND1
while simultaneously diluting RB1 (12).

It is becoming clear that regulation of protein function by dilut-
ing or concentrating with cell size is not a rare phenomenon. Many
proteins have been shown to “super” or “subscale” (mass fraction
increases/decreases) with cell size beyond a small set of proliferative
regulators. Recent studies point to histones (14, 15), translational
components (16), and several metabolic elements (14, 17, 18)
sub/super-scaling with cell size. Not all these proteins will act as
size rulers and may instead influence their activity. For example,
chromatin-associated histones have been shown to regulate equal
partitioning of Whi5 in asymmetric cell divisions in budding
yeast (19). Dilution of cell proteins (and intracellular DNA)
through excessive growth has also recently been associated with
the onset of cell senescence (17).

In other cells, size control is highly influenced by cell geometry.
For example, in fission yeast (20), size is thought to be determined
primarily at G2-M through the accumulation of localized CDR2
nodes at the growing mid body, activating cyclin-dependent
kinase 1 (CDK1) by inhibiting Wee1 (21–23). Because CDR2 accu-
mulation scales with surface area, this provides a means by which
the detection of cell geometry influences a size checkpoint. Other
work has shown analogous regulation of size by surface area or
volume in bacteria (24). Different geometric quantities, such asChester Beatty Laboratories, Institute of Cancer Research, London SW3 6JB, UK.
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surface area, may serve to mediate size control in different cell types
through coupling to signaling proteins.

Because most studies on size control use either yeast, bacteria, or
normal mammalian cells, there is little understanding of size deter-
mination in cancer. Classic studies indicate that increased size and
morphological heterogeneity are histological measures of cancer
grade, with large and more morphologically varied cancers,
tending to be more pathogenic (25). Only highly heterogeneously
sized lines induced tumors upon transplantation in mice (26).
This diversification of cell size has been shown to be cell autono-
mous and not an artifact of the environment (26). Together, these
observations suggest modification of cell size in malignant tissues
and that this contributes to (or coincides with) increased cellular
fitness. However, the exact relationship between size and disease
is poorly understood.

Consistent with the idea that size and size heterogeneity are as-
sociated with oncogenesis, dysregulation of RB1’s inhibitory actions
on E2F1, a putative size ruler, are frequent oncogenic events (27).
For example, many cancers have loss-of-function mutations in the
RB1 gene and/or exhibit up-regulated activity of extracellular
signal–regulated kinase (ERK) kinases, which promotes increased
CCND1 levels and a concomitant increased activation of RB1’s in-
hibitor, CDK4/6 (28). Mutations resulting in constitutively active B-
Raf proto-oncogene, serine/threonine kinase (BRAF) or NRAS
proto-oncogene, GTPase (NRAS) proteins, which result in in-
creased ERK kinase activity and, ultimately, CCND1 production
(29), comprise 50% and 20% of all melanoma cases, respectively
(30, 31). These common driver mutations are likely to directly
affect the size control machinery; however, the specific effect of
these mutations on size control is essentially unknown.

Here, we leverage the natural phenotypic heterogeneity of a
panel of melanoma cell lines to investigate the size scaling of intra-
cellular peptides and transcripts in the context of cell growth and
division. We show that BRAF and NRAS mutant melanomas have
diverse mean sizes, but size uniformity is maintained. RB1 subscales
with size across lines. However, the relative ratio of CCND1 and RB1
is constant, suggesting that a common set point of RB1 to CCND1 is
conserved, despite the presence of oncogenic mutations that can
affect the levels of both proteins.

We identify sub- and super-scaling species across the cell prote-
ome and phosphoproteome. In particular, we show that regulators
of G2-M, translation, and growth subscale with size across lines, but
proinflammatory proteins, extracellular matrix (ECM) compo-
nents, regulators of the cytoskeleton, and certain growth factor re-
ceptors superscale. Through integration of transcriptomic data, we
show that scaling of translation is regulated transcriptionally.

Larger lines, counterintuitively, have decreased levels of transla-
tion and altered biosynthetic signaling despite exhibiting an in-
creased growth rate. Moreover, these lines continue to proliferate
despite having sizes and phenotypes consistent with senescent
cells. Mathematical modeling indicates that uncoupling growth
and proliferative systems can facilitate division following a reduc-
tion mitogenic signaling. Conducting a regression analysis on the
model parameters, we found that TP53 or CDKN1A/p21 expression
covaries with promoters of growth. In proliferative large lines with
senescent-like sizes and proteomes, either TP53 or CDKN1A/p21 is
highly elevated. This research provides one of the first datasets de-
scribing how the transcriptional and proteomic profile of

melanoma cells can change with cell size, indicating that cell mor-
phology can have direct and meaningful effects on the chemistry of
the cell.

RESULTS
Melanoma cell lines exhibit comparable size control but
different cell sizes
To understand the relationship between cell size and different clin-
ically relevant oncogenic drivers, we initially quantified the mor-
phology of 17,547 single cells from 11 mouse melanoma cell lines
from three different genetic backgrounds (data S1 and fig. S1). Lines
were either: BRAF*, constitutively active BRAF typically due to a
V600E mutation (32); NRAS*, constitutively active NRAS due to
G12D mutations (33–36); or NRAS*/KDBRAF, where lines har-
bored a constitutively active NRAS mutation and a dominant neg-
ative mutation in the BRAF kinase domain (D594A) (subset of
Table 1) (34). NRAS*/KDBRAF mutants mimic the clinical situation
where there is paradoxical activation of BRAF following treatment
of NRAS mutant cells with BRAF inhibitors such as vemurafe-
nib (37).

For each single cell, we quantified 60 features (38). We used the
“cell area” feature as a proxy of cell size (9). Statistical analysis con-
firmed that the cell area distribution means were distinct [N-way
analysis of variance (ANOVA), P < 0.05] (Fig. 1A), demonstrating
extensive inter–cell line size heterogeneity. We performed an ex-
haustive series of Wilcoxon rank sum tests between area distribu-
tions (all distributions found to have unique medians, P < 0.001).
By retrieving the W statistic, we calculated the “common language
effect size” for each comparison. This produced a matrix of pairwise
comparisons between all cell lines that measured the degree of dif-
ference in median area between them. Clustering the lines accord-
ing to this difference, let us define three area classes (Fig. 1B): class
1: low mean (small cells), low variance, and high positive skew; class
2: moderate mean (larger cells), moderate variance, and moderate
positive skew; and class 3: high mean (largest cells), high variance,
and low skew (Fig. 1C). BRAFKD/NRAS cells tended to be larger.
NRAS and BRAF active cells spanned the range of sizes. Although
populations exhibited different extents of variance, we found that
across all distributions, the mean cell area linearly scaled with the
variance of cell area (R = 0.93), and the CV differed only modestly
between cell lines (0.9 to 0.6, all cells; 0.4 to 0.6, G2) (Fig. 1D). This
suggests that the lines have different size set points rather than
altered control, as while their mean sizes are different, their relative
dispersions about the mean remain approximately constant across
the lines.

Cell size relates to DNA content and DNA cytoplasm ratio in
melanoma
Previous studies have indicated that DNA content (3) and concen-
tration (17) are major determinants of cell size. Enacting fluores-
cence-activated cell sorting (FACS) analysis on a subset of our cell
lines revealed that (fig. S2) both small [4434 (460 μm2) and 5555
(490 μm2)] and large [B14341 (1500 μm2) and 17864A (900
μm2)] cell lines are largely 2N, and all exhibit partial 4N popula-
tions. We note that 21917 (800 μm2) and 24038 (2400 μm2) were
almost entirely tetraploid.

To further examine the relationship between DNA content and
size in single cells, we then quantified the nuclear content (as judged
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by integrated Hoechst intensity) across lines. This metric differs
from ploidy because it considers the amount of Hoechst staining
within the nucleus, which can be affected by factors such as
packing, but facilitates the measurement of many more cells. We
observed two independent linear relationships between DNA
content and cell area across cell lines (R = 0.47; P > 0.05, n = 11)
when populations are pooled and (R = 0.88 and 0.99; P < 0.05,
n = 7 and 4) when considered independently (Fig. 1E). Within
cell lines, DNA content and size are linearly related, as expected
(data S1). We then investigated how the DNA/cytoplasm ratio

(D/C) scaled with cell size (R = −0.84, P < 0.05, n = 11) and iden-
tified two distinct clusters of cell lines: a set of smaller cell lines with
a relatively high D/C and a set of large lines with a relatively low D/C
ratio (Fig. 1F). The size “classes” identified prior correspond to a low
DNA content, high D/C state (class 1); an overlapping high DNA
content, low D/C or low DNA content, low D/C state (class 2); and a
high DNA content, low D/C state (class 3).

Cell size in these cell lines is linearly related to DNA content. We
hypothesize that this relationship can be shifted by changing the

Table 1. Cell line details.

Cell ID Species Genotype details Derived from Source

19161 Murine NRAS mutant (mut)/tyrosinase Cre recombinase A (CreA) Brain
melanoma

Pedersen et al. Cancer
Discovery 2013 (33)

19398 Murine NRAS mut/tyrosinase CreA Brain
melanoma

Pedersen et al. Cancer
Discovery 2013 (33)

C873 Murine NRAS mut/tyrosinase CreA Brain
melanoma

Pedersen et al. Cancer
Discovery 2013 (33)

Ear tum Murine NRAS mut/BRAF kinase dead (BRAF KD) under tyrosinase Cre recombinase-
estrogen ligand-binding domain fusion protein (CreERT) with

tamoxifen (TAM)

Cutaneous
melanoma

Pedersen et al. PCMR
2014 (34)

EAR B Murine NRAS mut/BRAF KD under tyrosinase CreERT with TAM Cutaneous
melanoma

Pedersen et al. PCMR
2014 (34)

22532 Murine NRAS mut/tyrosinase CreA Brain
melanoma

Pedersen et al. Cancer
Discovery 2013 (33)

14508
LN (A)

Murine NRAS mut/BRAF KD under tyrosinase CreERT with TAM Cutaneous
melanoma

Pedersen et al. PCMR
2014 (34)

17568 Murine NRAS mut/tyrosinase CreA Brain
melanoma

Pedersen et al. Cancer
Discovery 2013 (33)

22783 Murine NRAS mut/BRAF KD under tyrosinase CreERT with TAM Cutaneous
melanoma

Pedersen et al. PCMR
2014 (34)

4434 (KB) Murine BRAF mut/p16−/− Cutaneous
melanoma

Dhomen et al. Cancer
Cell 2009 (32)

17864 Murine NRAS mut/UV Cutaneous
melanoma

Pedersen

17864A Murine NRAS mut/UV Cutaneous
melanoma

Pedersen

21917 Murine NRAS mut/UV Cutaneous
melanoma

Pedersen

21015 Murine BRAF mut/phosphate and tensin homolog (PTEN) null Cutaneous
melanoma

Pedersen

24038 Murine NRAS mut/BRAF KD Cutaneous
melanoma

Pedersen et al. PCMR
2014 (34)

B14341 Murine NRAS mut/BRAF KD Cutaneous
melanoma

Pedersen et al. PCMR
2014 (34)

C876 Murine NRAS mut/tyrosinase CreA Brain
melanoma

Pedersen et al. Cancer
Discovery 2013 (33)

C790 Murine NRAS mut/tyrosinase CreA Brain
melanoma

Pedersen et al. Cancer
Discovery 2013 (33)

17568 Murine NRAS mut/tyrosinase CreA Brain
melanoma

Pedersen et al. Cancer
Discovery 2013 (33)

5555 Murine BRAF mut/p16−/− Cutaneous
melanoma

Dhomen et al. Cancer
Cell 2009 (32)

NRASQ61 Murine NRAS Q61A Cutaneous
melanoma

Pedersen
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Fig. 1. Melanoma cell lines exhibit comparable size control but different cell sizes; cell size relates to DNA content and DNA cytoplasm ratio. (A) Violin plot
summarizing cell area distributions across lines. Acosh-normalized distribution means were subjected to an 11-way ANOVA test to confirm the significance of observed
differences. ** indicates a P value < 0.01. (B) Heatmap showing a clustering of lines based on effects sizes calculated after Mann-Whitney tests (median uniqueness follows
the same pattern as the means P < 0.01). Three distinct area classes emerge; the asterisk highlights that “class 2” seems the most variable. (C) Sample distributions from
each class; from C1 to C3, skew decreases, while the means and variances increase. (D) Shows the relationship between the means and variances of the area distributions.
Themean scales approximately linearly with variance (R = 0.93). The CV inconsistently varied with cell size. a.u., arbitrary units. (E) The relationship betweenmean cell area
and mean DNA content, area weakly positively correlates with cell area (R = 0.47); however, two linear relationships appear to be present. Treating them separately
drastically increases the correlation (R = 0.88 and 0.97). Error bars represent the SD of the single-cell data. Colored ellipses correspond to the “class” of the cell line.
(F) Relationship between DNA per area and cell area. The two linear progressions in (E) are separated by DNA/cytoplasm ratio. Error bars represent the SD of the
single-cell data. Colored ellipses correspond to the class of the cell line.

Jones et al., Sci. Adv. 9, eadd0636 (2023) 25 January 2023 4 of 21

SC I ENCE ADVANCES | R E S EARCH ART I C L E



DNA cytoplasm ratio, implying two separate systems relating DNA
and cell size in melanoma.

Translation throttles CCND1 accumulation in response to
upstream signaling
To understand the molecular drivers and consequences of size in
our cell lines, we constructed a proteomic dataset capturing 9215
total peptides and identifying phosphorylation events on 4312 pep-
tides, with a total of 21,355 unique phosphorylation events detected
(data S2). Peptide expressions, normalized to reflect the relative dif-
ference in mass fractions across cells lines (Methods), were correlat-
ed to cell areas revealing proteins whose concentrations
continuously scale with size.

Previous studies have demonstrated that in normal cells, there is
a critical RB1 concentration at which cells commit to division (12).
We thought to investigate the expression of RB1 and CCND1 in our
lines. Notably, 10 of 11 of the studied cell lines express detectable
RB1, and mean RB1 levels strongly subscaled with size [R = −0.84
(excluding 17,864, −0.51 if included), P < 0.05, n = 10 (or 11)]
(Fig. 2A). Specifically, larger lines exhibited lower mean concentra-
tion of RB1. As within lines (12), RB1 subscales with size
between lines.

CCND1 abundance was found to be weakly negatively correlated
with size (R = −0.38, P > 0.05, n = 11) (Fig. 2B). This suggests dif-
ferential regulation of CCND1 levels between lines, consistent with
the presence of mutations across the mitogen-activated protein
kinase (MAPK) pathway, rather than across sizes (see data S2 for
phosphoproteomic data on the MAPK pathway in these cell
lines). Despite their size and low RB1 mass fraction, 21015 BRAF
and C876 NRAS exhibited a CCND1 mass fraction comparable to
smaller cell lines, whereas our similarly large KDBRAF cell lines,
24038 and B14341, showed the lowest CCND1 expression
(ANOVA, KDBRAF versus NRAS + BRAF, P < 0.05 n = 2, 9)
(Fig. 2B). The ratio of RB1 to CCND1 is largely uncorrelated with
size (R = 0.2, P > 0.05, n = 11) (data S2). We concluded that the set
point, where CDK4/6:CCND1 activation exceeds RB1 activity to pu-
tatively drive proliferation, is thus similar across lines.

To understand the molecular basis for the interline scaling of
CCND1, we established a method to quantify the signaling activity
upstream of CCND1 using the phosphorylation state of transcrip-
tional regulators of CCND1, as defined by the ENCODE database
(39), (henceforth labeled CCND1regs) across different melanoma
lines. All phosphorylations used in the analysis with known causa-
tive kinases or documented cellular effects [as determined via the
PhosphoSitePlus (40) database] are detailed in data S4. These
include several canonical upstream regulators of CCND1 transcrip-
tion such as BRAF–MAPK kinase–ERK as well as JUN and MYC
among others. Across lines, we found that the phosphorylation of
the majority of CCND1regs follows a similar trend to RB1 rather
than CCND1 expression, negatively correlating with size (Fig. 2D;
see data S2 for specific examples). These pathways were largely up-
regulated in small cells (class I), consistent with the presence of ac-
tivating mutations in BRAF and NRAS (Table 1). These pathways
were also down-regulated in large cells (class 2/3), consistent with
the fact that some of these lines have inactivating mutations in
BRAF abolishing kinase activity (34, 37).

We observed a negative relationship between cell size and the
ratio between RB1 and CCND1reg expressions, showing that
larger cell lines, in fact, exhibit more pro-CCND1 signaling per

molecule of RB1 than smaller cell lines [R = −0.37 with 17864;
−0.86 without; n = 10 of 11, P > 0.05 (with); P < 0.05 (without)].
Moreover, this implies that the CCND1 levels in larger lines are
not due to differences in mitogen signaling alone.

Investigating this phenomenon, we identified proteins whose ex-
pression correlated with the RB1/pCCND1reg ratio (Fig. 2E) and
conducted SAFE and ontological analysis [hit peptides satisfy;
fold-change (Methods) of >1.5 or <0.66, |R| > 0.55] (Fig. 2F). We
observed that low RB1/pCCND1reg ratio (i.e., in large cells) is asso-
ciated with lower expression of ribosomal and spliceosome proteins
(“translation” mRNA processing; e.g., RPL26, SNRPE, P < 10−6)
(ontological enrichment significances are calculated using the hy-
pergeometric test) (Fig. 2G and data S7). This suggests that
reduced biosynthesis inhibits the conversion of CCND1 signaling
to functional CCND1.

Together, these data suggest that in large cells, while upstream
activity of CCND1 regulators is high relative to RB1, decreased
translational efficiency can “throttle”CCND1 protein accumulation.
Subscaling of the biosynthetic fraction may exacerbate the effects of
genetic factors limiting CCND1 production, such as the kinase-dead
BRAF mutation, D594A.

Proteome-wide identification of sub and
superscaling factors
We next sought to describe more broad differences in protein ex-
pression between the lines. We conducted a volcano analysis com-
paring correlations of protein mass fractions with size and the fold
change across big and small cell lines (F3A).

We classified size-correlated peptides as “hits” (Fc > 1.5
or < 0.66, |R| >0.55), which were then sorted into two groups.
One group of peptides are those expressed in class 1/2 (small)
cells (thus, subscaling) and those expressed in class 2/3 (large)
cells (superscaling). We conducted an ontological analysis on all
the hit peptides (Fig. 3B). Small cells were enriched for subscaling
proteins encoding regulators of cell cycle and mitotic processes
(labels include “cell cycle process,” “mitotic cell cycle process,”
and “cell division”; P <10−9). These proteins included checkpoint
mediators ATM, BRCA1, and WEE1 and the mitotic cyclin
CCNB2. In contrast, class 2/3 large lines were statistically enriched
for superscaling peptides from lipid/glycolipid metabolic processes
and components of the ECM. These included MVK, MVD, ACAT2,
and COL2A1 (all ontology enrichments significant to at least
P < 10−3) (data S3 and S4; see Fig. 3E for examples). To capture
how protein kinase activity may also sub or superscale, we analyzed
the set of proteins for which at least one phosphorylation was de-
tected using the same system as that above (Fig. 3, C and D). In class
I small cells, we observed a clear enrichment of subscaling phospho-
peptides from cell cycle regulators (mitotic cell cycle, cell cycle
process, and cell cycle; P <10−9, e.g., BRCA1, SPDL1, and LIG1)
and biosynthetic processes [“regulation of cellular biosynthetic
process,” “regulation of macromolecule biosynthetic process,” and
“positive regulation of RNA metabolic process”; P <10−9, e.g.,
mechanistic target of rapamycin kinase (mTOR), TSC1, EIF4B,
EIF4G1, and MED26], including the canonical mTORC1-activating
phosphorylation, S2448(49) , implying up-regulation in small cell
lines. Class 2/3 larger cell lines were enriched for superscaling phos-
phorylations on guanosine triphosphatase (GTPase) and cytoskele-
tal regulators (“positive regulation of GTPase activity,” “cell junction
assembly,” and “regulation of cytoskeleton organization”; P <10−4,
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Fig. 2. Translation throttles CCND1 accumulation in response to upstream signaling. (A) Negative correlation between RB1 mass fraction and cell size (R = −0.84
(excluding 17,864, −0.51 if included), P < 0.05, n = 10 (or 11). (B) Relationship between CCND1 mass fraction and cell size (R = −0.38, P > 0.05, n = 11), C876 and 21015
exhibit unexpectedly high levels of CCND1 given their RB1 abundance (C) Cartoon schematic depicting the role of RB1 in the dilution model of G1-S transition and release
of E2F transcription factor 1 (E2F). (D) Heatmap depicting the ratio of RB1 against detected CCND1 regulator phosphopeptides; ratios are typically lower in larger lines. (E)
The average value for all RB1/rCCND1 ratios for each line plotted against cell area. Error bars represent ± 1 SD (R =−0.37 with 17,864, −0.86 without. n = 10 of 11, P > 0.05
(with), P < 0.05 without). (F) Network describing interactions between proteins correlating with RB1/pCCND1reg. SAFE overlay in (F) screening for graph regions enriched
for ontological labels. Color intensity denotes the confidence of the enrichment (minimal enrichment confidence of 1 × 10−3). (G) Heatmaps showing the expression of
peptides found in enriched regions of the interaction network across lines.
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Fig. 3. Proteome-wide identification of sub- and superscaling factors. (A) Fold change in peptide abundance across large and small cell lines plotted against the
significance of the expressions correlation with size {genes achieving abs[log2(fc)] > 0.5, P < 0.05 are taken forward for ontological analysis}. Color represents data point
density. (B) Ontologies enriched in peptides differentially expressed across big/small lines. (C) Fold change in phosphopeptide abundance across large and small cell lines
plotted against the significance of the expressions correlation with size {genes achieving abs[log2(fc)] > 0.5, P < 0.05 are taken forward for ontological analysis}. Color
represents data point density. (D) Ontologies enriched in phosphopeptides differentially expressed across big/small lines. (E) Example hits from the analysis, BRCA1, and
relative mTOR phosphorylation subscale with size, EGFR superscales. (F) Network derived from screening for interactions within the list of size predicting, kinase-regu-
lated, peptides. Interaction data were obtained from the STRING database. Right: SAFE overlay in (D) screening for graph regions enriched for ontological labels. Bottom:
SAFE overlay in (D) screening for regions with high expression/phosphorylation in large/small cell lines.
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e.g., CTNNB1, LATS1, ROCK1, ARHGEF5, ARFGEF1, and
ARHGAP12) and also set of growth regulators [“regulation of mac-
romolecule biosynthetic process”; P <10−6, platelet derived growth
factor receptor alpha, platelet derived growth factor receptor beta,
insulin receptor substrate 1 (IRS1), protein kinase C delta, and
DEP domain containing MTOR interacting protein (DEPTOR)],
implying differential regulation of biosynthesis across the size
range (data S3; see Fig. 3, E to G for examples). These included ac-
tivating phosphorylations on ROCK1 (S1341) and a CTNNB1 deg-
radation signal (S29) (40). Notably, DEPTOR phosphorylation and
expression superscaled with size, implying down-regulation of
insulin-TOR signaling; this is consistent with the observed reduc-
tion in mTOR S2448 expression. See figs. S4 and S5 for a full set
of mTOR and cytoskeletal phosphorylations associated with
cell size.

We then sought to define a regulatory network of proteins that
scale with size. By integrating protein-protein interaction data (41)
(see data S2 for these unfiltered hits) with our list of phosphopep-
tides and peptides whose mass fractions correlated with size, we
derived a protein-protein network (62) (Fig. 3H). At this stage,
we replaced scaled abundance of the phosphopeptide with an “ad-
justed abundance,” measuring the phosphopeptide abundance rel-
ative to the amount of peptide detected (Methods). This way, we
could reveal peptides that were more/less phosphorylated than ex-
pected, given their mass fraction.

Application of the SAFE algorithm (42) visualized themes em-
bedded in the networks of super- and subscaling proteins (Fig. 3H)
(43–46). Analysis of these networks, in conjunction with an addi-
tional ontological analysis, echoed the prior results, that it is the dis-
proportionate expression and phosphorylation of “G2-M control”
phosphopeptides that defines our smaller cell lines (e.g., BRCA1,
WEE1, CCNB2, and ATM), including BRCA1 S686 an AKT1
target and stabilizing phosphorylation (40). In larger lines, we ob-
served altered phosphorylation of “translation control” (e.g., eEIF4B
and EIF5B), “spliceosome machinery” (e.g., SNRPE and SF3B4),
“cell adhesion” peptides (e.g., YAP1, YES1, and CTNND1), and in-
creased expression of “growth signaling” (e.g., epidermal growth
factor receptor and platelet-derived growth factor receptor) pep-
tides (Fig. 3H) (all enrichments significant to least P < 10−3).
Despite mTOR S2448 subscaling, many phosphorylations enriched
in larger cell lines correspond to insulin signaling events such as
EIF4B S497 (40). The consequences of many such phosphorylations
are unknown, but given the subscaling of mTOR S2448, they likely
fulfill inhibitory functions.

Larger cell sizes, related to lower D/C ratios, are associated with
decreased G2-M and DNA-Damage response (DDR) mass fractions
and increased relative expression of ECM and lipid metabolic com-
ponents. Further, large sizes coincide with increased phosphoryla-
tion of cytoskeletal effectors and differential regulation of the
biosynthetic machinery.

Inflammatory transcripts are enriched in larger cell lines
We next performed transcriptomic experiments to gain further
insight into the relationship between size and signaling network or-
ganization and activity. We measured the abundance of 24988 RNA
molecules overlapping with 9290 measured peptides (data S5). We
conducted a volcano analysis, as described previously (Methods), to
identify a list of transcripts that super- and subscale with size across
lines (Fig. 4A). mRNA’s relating to cell cycle regulation (“regulation

of cell cycle”; BARD1, WEE1, E2F8, and RB1) and control of gene
expression (“negative regulation of gene expression,” “chromatin or-
ganization”, and “cell differentiation”; e.g., SIN3A, SOX2, and
HMGA1) subscaled with cell size (enrichments significant to at
least P < 1 × 10−3) (Fig. 4, B and C, and data S3). These observations
are in line with observations that small cells express relatively higher
levels of cell cycle regulatory proteins such as WEE1. Transcripts
pertaining to inflammation processes [“inflammatory signaling”
and “interferon signaling” including signal transducer and activator
of transcription 1 (STAT1), interferon induced protein with tetratri-
copeptide repeats 1, interferon regulatory factor 5 (IRF5) and IRF7,
and adenosine deaminase RNA specific] were up-regulated in larger
cell lines (enrichments significant to at least P < 1 × 10−3).

In conjunction with that observed in the proteomic data, these
data show that compared to class 1/2 smaller cells, class 2/3 larger
cells have decreased levels G2-M regulators, altered metabolism and
biosynthesis, and an increased inflammatory (transcript) mass
fraction.

Transcription regulates ribosomal scaling
To examine the role of translation and transcription in size and pro-
liferation control, we first related mRNA and peptide abundances in
each line. Correlation coefficients between mRNA and expression
ranged between 0.56 and 0.38 (n = 9290), in agreement with previ-
ous studies (47) (Fig. 5, A and B). We then calculated correlations at
the gene level, across cell lines. Notably, this revealed that for most
genes, there is poor correlation between mRNA fraction (reads of
gene/total reads in the cell line) and peptide mass fraction. Of
those that exhibited significant correlations (1116 of 9290), many
showed negative relationships (277 of 1116) (Fig. 5C).

By conducting ontological analysis on the genes with significant,
(P < 0.05, |R| > 0.55, n = 11) correlations with peptide abundances,
we observed an obvious enrichment of cell cycle and DNA repair/
replication genes (cell cycle process, “DNA replication,” and
“mitotic cell cycle phase transition”; P < 10−6, e.g., “BRCA1,”
“CCNB2,” “CCND2,” “CCNA2,” “BRIP1,” “CDK4,” and “ECT2”)
(Fig. 5, D and E). As peptides are synthesized from transcripts, a
correlation between peptide and mRNA mass fractions implies
that transcription is limiting the production of these proteins. We
note that uncorrelated peptide-mRNA abundances do not necessar-
ily indicate translation limiting peptide manufacture, as mRNA-
peptide correlation can be “buffered” through several other
means, such as protein degradation (48).

To identify genes that were strongly correlated in specific size
classes, we split the transcript/proteomic datasets into “large” and
“small” subsets, composed of cell lines with sizes above/below the
mean (900 μm2), and recalculated the correlation coefficients
between mRNA and peptide fractions. At the gene level, in the
smaller subset, we observed enrichment of inflammatory, adhesion
and cell cycle regulators (“type 1 interferon signaling pathway,”
“regulation of cell adhesion,” and “mitotic cell cycle checkpoint”;
P <10−5, e.g., “IRF9,” “IFIT3,” “STAT1,” “RHOD,” “CTHRC1,”
“CCNB2,” and BRCA1) (Fig. 5, F to H) in the list of genes with sig-
nificant peptide-mRNA correlations (n = 5, P < 0.05, |R| > 0.75). In
large cells, there was a strong correlation between mRNA and the
protein mass fraction of ribosomal and translational genes (n = 5,
P < 0.05, |R| > 0.75) (translation, “cytoplasmic translation,” and “cy-
toplasmic large ribosomal subunit”; P <10−9, e.g., RPL26, RPL8,
RPL23, RPL5, and ETF1) (Fig. 5, I to K). This suggests that
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Fig. 4. Inflammatory transcripts enrich in larger cell lines. (A) Heatmap of transcriptomes across cell lines. Lines/transcripts are grouped through hierarchical clus-
tering conducted using the “Morpheus” software (Broad Institute). (B) Volcano plot for the fold change of transcripts across size groups against the RNA size correlation.
The genes achieving abs[log2(Fc) > 0.5] and |R| > 0.55 were taken forward for ontological analysis. (C) Ontologies enriched in large/small cell lines. Inflammatory tran-
scripts enrich in larger lines, while those related to cell cycle and gene regulation enrich in smaller lines (FDR < 1 × 10−3). (D) Examples of correlating transcripts in
either group.
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Fig. 5. Transcription regulates ribo-
somal scaling. (A) Correlation
between gene and peptide expression
within each cell line; coefficients range
between 0.4 and 0.6. (B) Log-log plots
of RNA against peptide abundance;
color intensity is proportional to the
density of the data points. (C) Distri-
bution of correlation coefficients
between peptide and mRNA abun-
dances across cell lines, dotted box
indicates genes with significant
(P < 0.05, |R| > 0.55, n = 11) positive
correlations. (D) Enriched gene ontol-
ogies detected in the genes with sig-
nificant RNA-peptide correlations
(P < 1 × 10−3 enrichment confidence
or higher). (E) Example protein-mRNA
correlations from the cell cycle process
and mitotic cell cycle process themes.
(F) Distribution of correlation coeffi-
cients between mRNA and peptide
abundances in small (area < 900 μm2)
cell lines. We note a positive skew and
more positive mean than in the
pooled distribution. (G) Themes en-
riched in the set of genes exhibiting
significant correlations (P < 0.05, n = 6,
|R| > 0.70) between peptide andmRNA
abundance in small cell lines. (H)
Example correlation between CCNB2
peptide and mRNA abundance from
the mitotic cell cycle checkpoint
theme. (I) Distribution of correlation
coefficients between mRNA and
peptide abundances in big (area > 900
μm2) cell lines. We note a negative
skew and more negative mean than in
the pooled distribution. (J) Themes
enriched in the set of genes exhibiting
significant correlations (P < 0.05, n = 5,
|R| > 0.75) between peptide andmRNA
abundance in big cell lines. (K)
Example correlation between Rpl5
peptide and mRNA abundance from
the translation theme. (L) Expression
of all detected RNA Pol 1 (top left)/2
(right)/3 (bottom left) components
across cell lines. Large lines tend to
exhibit lower expression. (M) Rela-
tionship between RNA Pol 1/2/3 (left
to right) peptide expression and the
peptide (top)/mRNA (bottom) expres-
sion of identified RNA peptide corre-
lates in large cells in the translation
theme. We note that both RNA and
peptide abundance correlate, sug-
gesting transcription regulation of peptide expression.
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control of the expression of translational components occurs
through transcription at larger cell sizes. Correlating RNA-poly-
merase (RNAP) 1/2/3 component expressions (Fig. 5L) to the
mRNA abundance of ribosomal components, we note a clear pos-
itive relationship (for Pol1/2). This extended to the peptide abun-
dance, further suggesting that the production of ribosomal peptides
is transcriptionally limited in these cell lines. This was not observed
in smaller cell lines; while the correlation between Pol1/2 expression
and peptide expression was maintained, the relationship with
mRNA was disrupted, indicating a translational, or at least, post-
transcriptional dependency in smaller lines (data S5 and S3).

Together, these data suggest that the disruption of cell transcrip-
tion relates to the subscaling of the biosynthetic mass fraction in
larger, low D/C, cell lines. This may occur through the decreased
RNAP expression at larger sizes. Depressed biosynthetic expression
and signaling may underpin further scaling relationships.

Validation of size-scaling relationships in an independent
panel of melanoma cell lines
To assess the universality of our size-scaling relationships, we ex-
tended our panel of 11 lines to include a further 12 composed of
the same genotypes as before and conducted further quantitative
morphological and phosphoproteomic experiments and analyses
(statistical thresholds for hit detection remain the same as the pre-
vious analysis). In contrast to the previous analysis, we note an ad-
ditional “arm” of the volcano plot indicating a subset of peptides
extremely enriched in larger cell lines (fig. S3). We hypothesize
that this represents gene overexpression rather than superscaling re-
lationships, as there is no smooth transition in between the arms.
Initially including these genes in the analysis, we found that an in-
creased mass fraction of apoptotic effectors [“apoptotic signaling
pathway,” “positive regulation of mitochondrial membrane perme-
ability involved in apoptotic process,” and “necrotic cell death”; P <
10−3, e.g.,“BOK,” “Toll-like receptor 3 (TLR3),” “TLR4,” “BCL2,” and
“TICAM1”] and lipid/carbohydrate metabolism (“lipid metabolic
process,” “small-molecule metabolic process,” and “oligosaccharide
metabolic process”; P <10−8, e.g., GAA, NEU1, ALG11, and ACOX3)
is associated with large cell lines. Excluding the “overexpressed”
genes, we observe enrichment of lipid metabolic proteins alone
(“lipid biosynthetic process,” lipid metabolic process, and “sterol
metabolic process”; P < 10−5). In contrast, we observe a clear enrich-
ment of cell cycle (cell cycle process and cell cycle checkpoint;
P <10−15, e.g., CDK2, CCNB2, CCNA2, and CDC45), mitotic
(mitotic cell cycle checkpoint and “chromosome segregation”; P <
10−10, e.g., SPDL1, ECT2, and PLK1) and DNA repair (“DNA
repair” and “cellular response to DNA damage”; P < 10−10, e.g.,
BRCA1 and LIG1) peptides in smaller lines indicating subscaling
(fig. S4 and data S3).

Enacting the same analysis for the phosphopeptides (fig. S4), we
again observe additional arms, indicating gene overexpression in
big/small cell lines. We first calculated enrichments for the two
central arms finding phosphorylations on cell cycle, DNA repair,
and biosynthetic regulatory peptides (cell cycle process, DNA
repair, and regulation of macromolecule biosynthetic process; P <
10−7, e.g., RCA1, CHEK1, CDK4, EIF4B, “RPS5,” and EIF3G)
enrich in smaller cell lines. In larger cell lines, phosphorylations
pertaining to cytoskeletal and growth factor signaling (regulation
of GTPase activity, “cytoskeletal organization,” cell adhesion, and
“regulation of epidermal growth factor receptor signaling

pathway”; P < 10−3, e.g., ARHGEF6, GIT1, TSC2, ROCK1/2,
CDC42, TLN1, and AKT1/3) are enriched. Within each overex-
pressed group, we found that larger cell lines were up-regulating
GTPase signaling elements (positive regulation of GTPase activity,
“regulation of small GTPase–mediated signaling,” and “Rho protein
signal transduction”; P < 10−10, 10−10, 10−10, respectively), e.g.,
ARFGAP1, TIAM2, and ARHGAP1, while up-regulations in
smaller cell lines followed no theme (fig. S3 and data S3). We
then investigated which ontological themes were enriched in both
analyses finding good agreement; a full discussion of this analysis
can be found in the Supplementary Materials. We recover a large,
BRCA1-centric set of interacting genes in both analyses, implicating
BRCA1 in size-dependent phenomena (fig. S3).

These data corroborate our previous analysis, strengthening the
claim that G2-M and DNA repair processes define smaller melano-
ma cell lines (with associated peptides subscaling with cell size),
while regulation of cytoskeletal organization and the rewiring of bi-
osynthetic signaling and lipid metabolism define larger cell lines
(peptides superscaling with size).

Cell growth rate scales with cell size despite down-
regulation of biosynthetic effectors
Having observed subscaling of ribosomal and spliceosome peptide
expression, differential phosphorylation of biosynthetic regulators,
depressed proliferative signaling, and an enrichment of inflamma-
tory effectors in larger cell lines, we expected them to exhibit a
notably decreased growth rate. To investigate this, we live-imaged
two cell lines from each genotype spread across the observed
range of cell sizes and quantified the average rate of growth as the
area gain per time, (square micrometer per hour) (Methods). Un-
expectedly, growth rate was found to increase with cell size despite
the observed down-regulation of biosynthetic effectors (Fig. 6A),
and proliferation rate was only modestly affected (fig. S3). We
note, however, that this relationship does not appear linear, suggest-
ing that the system behind this phenomenon begins to fail at large
cell sizes. These data show that larger melanoma cell lines can main-
tain cell growth without the scaling of classical growth regulators.

Investigating mTOR signaling specifically, we note that while the
primary activating mTOR phosphorylation sites [S2448, S2481;
phosphorylations responsible for signaling through mTORC1/2, re-
spectively (49)] are under-phosphorylated in larger cells (phospho-
peptide abundance is lower than expected given peptide
abundance), many upstream regulators exhibit phosphorylations
typical of insulin-driven receptor tyrosine kinase (RTK) signaling.
However, these genes were differentially phosphorylated across the
cell sizes; for example, IRS1 S414 is enriched in smaller cell lines,
while IRS1 T448 is enriched in larger lines (40). These data
further indicate that differential, rather than reduced, RTK signal-
ing across sizes leads to the observed down-regulation of biosyn-
thetic effectors in larger cell lines (fig. S5).

Given the altered signaling state and having noted an increased
cytoskeletal peptide mass fraction (and an increase in its phosphor-
ylation) in larger cell lines, we were interested in the state of canon-
ical RTK-driven pathways of cytoskeletal activation. We noted that
HER2, (1108), SRC (S17), PAK4 (S476), ROCK1 (S1341), VASP
(S317), and LIMK1 (S298) [many of which are activating phosphor-
ylations (40)] among others, where disproportionately abundant in
larger cell lines, indicating that RTK-driven cytoskeletal activity is
up-regulated (fig. S6). We hypothesize that larger cell lines have
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Fig. 6. Theoretical modeling suggests decoupling of lowmitogen and growth signaling drive proliferation of larger cells. (A) The relationship between cell growth
rate and cell size across six lines representing each genotype and size class. Growth rate increases with increasing cell size. (B) A demonstration of the stability of the size
distribution mean to perturbations to a cell division area and instability of the mean with respect to perturbations to α. Bottom depicts the stability of proliferation rate
with respect to both parameters. (C) The function describing how the CV changes with increasing cycle complexity; the pink box marks the CV’s observed in our cell lines
and the yellow, those observed in other studies. (D) The relationship between fitted α values and cell size, α broadly negatively correlates with themean size of the cell line
(R = 0.75, n = 11, P < 0.05). Error bars indicate the range of α values that generated similar fit strengths. (E) Model outputs demonstrating the best fits achieved for G1
distributions. Orange histograms are model outputs, and blue histograms are the experimental data. The blue line shows D(experimental||measured) and the red line the
reverse. (F) Cartoon summary on the model relating parameters to biologically processes.
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skewed their RTK signaling machinery toward the regulation of cy-
toskeleton reorganization rather than through up-regulation of an-
abolic processes. This may lead to increased size, in part, by
increased spreading of the cell.

Theoretical modeling suggests decoupling of low mitogen
and growth signaling drive proliferation of larger cells
Noticing that growth rate is maintained in larger cell lines in the
background of down-regulated proliferative and biosynthetic sig-
naling, we sought to understand the significance of this effect at a
more system level. We used a simplification of recent models, where
the transition rate between cell cycle stages is governed by a power-
law relationship with cell size

R ¼ αAðtÞy ð1Þ

Following previous studies (50), the transition time probability
distribution under an exponential growth condition is given as

AðtÞ ¼ Abekt;PðT . tÞ ¼ e
�

ðt

0
αAðsÞyds

¼ e�
αVγ

b
kγ ðe

αγt � 1Þ
ð2Þ

indicating that the γth power of the added area follows an exponen-
tial distribution centered on γk/α;

P½Vγ
b ðe

αγt � 1Þ . t� ¼ e�
αt
kγ ð3Þ

Taking y = 1, the mean added mass equals k/α. We could capture
similar behavior when considering the simpler case where the prob-
ability of transitioning between cycle stages and growth rate are
taken to be a constant within a cycle but are adjusted according to
cell division size (Adiv), (P = αAdiv, β = kAdiv, respectively) defining a
Poissionian system. We believe that this simplification provides a
useful tool for the understanding of cell size determination in the
adder case. Here, we have assumed adder-like behavior, as small
errors in sizer mechanisms can lead to phenomenological adder
systems (9). Using these, we could derive expressions for the expect-
ed proliferation rate and added size, given as exponential

distributions

PðtÞ ¼ λe� λt; λ ¼ �
1

lnð2Þ
ln ð1 � αAdivÞ ð4Þ

P½AðtÞ� ¼ λ2e� λ2AðtÞ; λ2 ¼ �
1

lnð2Þ Adivk
lnð1 � αAdivÞ ð5Þ

We include the derivations in the Supplementary Materials. This
facilitated the construction of a simple system of equations dictating
cell size

Sðα;Adiv; kÞ ¼ ftm ¼
� lnð2Þ

ln½1 � αAdivðnÞ�
;Adivðnþ 1Þ

¼
1
2

AdivðnÞ þ
� lnð2Þβ

ln½1 � αAdivðnÞ�
; β ¼ kAdivðnÞg ð6Þ

where “tm” is the mean proliferation time, and “n” is the number of
proliferative cycles that have passed. Perturbing the parameters of
this system, we find that it is stable to perturbations in Adiv
(Fig. 6B) but unstable to changes in α or k. That is, a constant
mean size is maintained under this system that may be adaptively
regulated by modification of α, related to mitogenic signaling and k,
controlling the growth rate.

If α is perturbed, then the proliferation rate initially decreases but
exponentially decays back to the initial value across successive divi-
sion cycles. Thus, if the α and k parameters are independent, then
cell growth provides a means to “correct” proliferation rate under
perturbation to mitogenic signaling (Fig. 6B).

Using Eqs. 4 and 5, we could derive the moments of the expected
size distribution (see the Supplementary Materials). This is a hypo-
exponential function, with a mean and variance given as

hP½AðtÞ�i ¼
2x
λ2
¼

2x kln2
α

; hhP½AðtÞ�ii ¼
4x

3ðλ2Þ
2

¼
4xk2½lnð2Þ�2

3α2 ð7Þ

where x is the number of “stages” in the model of cycle. This yields a
CV

CV ¼

ffiffiffiffiffiffiffiffi
4x

3ðλÞ2
q

2x
λ
¼

1
ffiffiffiffiffi
3x
p ð8Þ

The cell lines have G1 CVs of ~0.7 to 0.5, and x was calculated to
range between 0.8 and 1.1. For simplicity, we took x = 1 from this to
avoid complications stemming from a decimal number of cell cycle
stages. We note that this approach is only feasible when the CV >
~0.25 as the differences in CV values for neighboring “x” tend to
become 0 as x increases; this is equivalent to an ~5-stage
system (Fig. 6C).

These results allow us to define a simple and efficient algorithm
to calculate predicted cell size distributions (Methods) (Fig. 6E).
The α values were fit to experimentally determined area distribu-
tions by minimizing the Kullbeck-Leibler divergence between mea-
sured and calculated distributions (β is a measured parameter for 6
of 11 cell lines; the remaining lines growth rates are fit to the mea-
sured relationship); α values exponentially decrease with increasing
cell size (Fig. 6F and Table 2). The simulation accurately

Table 2. Model parameters.

Cell line α (P/μm2) β (μm2/min)

4434 3.49 × 10−06 0.16

17864 3.67 × 10−06 0.22

17864A 4.71 × 10−06 0.43

21917 1.82 × 10−06 0.35

21015 1.73 × 10−06 0.55

24038 6.38 × 10−07 0.49

B14341 1.35 × 10−06 0.52

C876 6.38 × 10−07 0.60

C790 2.46 × 10−06 0.25

17568 3.32 × 10−06 0.19

5555 2.59 × 10−06 0.20
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recapitulated much of the measured data (total G1 and G2 distribu-
tions); however, in the case of larger cell lines, the model partially
underpredicted the abundance of small (A < 500 μm2) cells [see
24038 (2500 μm2), C876 (1600 μm2), 17864A (1000 μm2), and
B14341 (1500 μm2) (Fig. 6G)]. A summary of the model can be
found in Fig. 6H. Together, our modeling has shown that given a
proportionality between cell size and division probability, increased
cell growth is an effective means of triggering proliferation when
scaling of proliferative factors is perturbed, for example, by a reduc-
tion in mitogenic signaling.

Expression levels of the TP53-CDKN1A-CCND1 axis predict
cell growth rate and model parameter values
We noted that the α (mitogenic signaling) and β (growth rate) pa-
rameters of our model showed nonlinear relationships with cell size
(exponential and hyperbolic respectively); thus, we expected that
peptides whose levels correlated with α and β would be (partly) in-
dependent of those that correlate with size as determined by
imaging (Fig. 7A). Thus, by leveraging our proteomic datasets, we
could provide mechanistic insight the coordination of size
and growth.

We constructed a partial least-squares regression (PLSR) model
predicting parameter values from the proteomic expression data
(R = 0.98). Fivefold cross validation was used to select the
number of components and maximize transferability of the model
(Fig. 7B). For each peptide, we calculated a variable importance to
projection (VIP) score (Methods), representing the significance of
each peptide to the prediction of α and β; the sign of the VIP score
was set to reflect the model weights of the first component (Fig. 7C).
Gene set enrichment analysis (GSEA) (51) was used to find overrep-
resented proteins and complexes in lists of peptides predictive of α
and β.

We found that down-regulation of an interaction module con-
taining many canonical regulators of cell cycle progression were
strong predictors of growth rate in our cell lines (similarly, an up-
regulation–predicted α or extent of mitogen signaling) [false dis-
covery rate (FDR) < 0.05], including WEE1, SKP2, and CDC25A
(Fig. 7D). Expression of peptides pertaining to lipid metabolic pro-
cesses and ECM deposition where positively predictive of growth
rate (FDR, 0.05) (fig. S5). Proteins that covaried with these peptides
included CCND1, p21, and TP53 (Fig. 7D). Many of these peptides
were also found to correlate with cell size (as determined by
imaging). Thus, using an unsupervised, independent analysis, we
showed that proteins that sub/superscale with size are also key reg-
ulators of growth. This suggests that in many cases, the concentra-
tion of many of these proteins, which is a function of size, will
directly affect growth rates.

We hypothesized that proteins that predicted growth, or whose
levels covaried with predictors of growth, could provide insight into
mechanisms by which proliferation is maintained in cancer cells
with relatively large cell areas and high cytoplasmic/nuclear ratios.
In normal cells, large size can lead to senescence (14, 17–18). We
focused particularly on TP53 and CDKN1A/p21, which covaried
with proteins that are predictive of growth (Fig. 7, D and E). We
observed a trimodal relationship between growth rate, CDKN1A,
and TP53 expression. Most cells had modest levels of CDKN1A or
p53 and average growth rates. However, two groups of cells had rel-
atively high growth rates, corresponding to their increased size and
high cytoplasmic/nuclear ratio (lines 21015 BRAF, C876 NRAS,

B14341 KDBRAF, and 24038 KDBRAF). However, these lines
were notably different in their levels of CDNK1A and TP53. One
group of BRAFKD cells has high growth rates and large size and
is CDKN1A low and TP53 high. However, the other group of
NRAS and BRAF mutant cells has high growth rates and large
size and is CDKN1A high and TP53 low. Further, CDKN1A and
CCND1 mass fractions were observed to scale linearly with one
another (excluding 4434, R = 0.92, else R = 0.72, P < 0.05,
n = 11). Thus, in these cell lines, a high growth rate (and large
size) is associated with two distinct states: a /TP53low/p21high/
CCND1high state and a /TP53high, /p21low/CCND1low state
(Fig. 7F). Together, these data suggest that large melanoma cells
exist in two states that increase the probability of cell cycle progres-
sion, and not senescence, despite subscaling behavior of the biosyn-
thetic and cell cycle mass fractions.

DISCUSSION
We have identified scaling relationships between cell size and
peptide/gene expression in melanoma. Expression and phosphory-
lation of G2-M, DNA-associated and biosynthetic peptides exhibit-
ed a clear subscaling relationship with cell size across two
independent panels of melanoma cell lines, while expression of
lipid metabolic genes and phosphorylation of cytoskeletal regula-
tors showed the reverse. This is in strong agreement with numerous
recent studies investigating the relationships between cell size and
gene/peptide expression, identifying histones as subscaling compo-
nents (15), observing an up-regulation of lipid metabolism in larger
cell lines (17), noting a decreased abundance of translational com-
ponents and translation rate in large polyploid cells (16), and full
proteome surveys of scaling components in lung fibroblasts (14)
and a large panel of human cell lines (18).

We observed that the mean RB1 mass fraction decreased with
increasing cell size, corroborating the findings of recent studies as-
sociating RB1 (and Whi5) dilution to size determination and
control (7, 12). This trend extended to the abundance of phospho-
peptides associated with CCND1 transcription and the abundance
of core ribosomal and spliceosomal peptides. These data suggest
that the state of the RB1-CCND1 axis in melanoma or, indeed, an
RB1-dilution system (12) is sensitive to both the strength of prolif-
erative signaling and translational capacity of the cell in melanoma.
Reduced signaling and protein production may decrease CCND1
abundance, and therefore, RB1 must dilute further to induce divi-
sion commitment, thereby delaying proliferation until a greater cell
size. Recent literature suggests G2-driven synthesis of CCND1 (13,
51), noticing a tight dependence on cellular translation (13). Trans-
lation and mitogen signaling in the prior G2 may color events in the
subsequent G1. “Subscaling” of G2-M regulators, such as WEE1 and
BRCA1, may relate to smaller cells exhibiting increased expression
of CCND1.

We constructed a simple theoretical model to demonstrate how
continued growth under proliferative stress could maintain the cell
proliferation rate. This relied on the probability of a cell transition-
ing to the next stage of the cell cycle being proportional to its size
(50), for example, via RB1 dilution. This is consistent with the recent
observation that cell cycle phase lengths across generations are
coupled in cancer cell lines (52), here, via mother cell size (13).
The same study notes that this effect may be unique to cancerous
cell lines due to a disproportional abundance of regulators acting
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Fig. 7. Expression levels of the TP53-CDKN1A-CCND1 axis predict cell growth rate and model parameter values. (A) Relationship between cell size and the α
(mitogenic signaling) and β (growth rate) model parameters: Neither exhibits a linear relationship. Growth rates were interpolated from the size-growth curve for cell
lines where a growth rate was not directly measured. (B) PLSR model predicting cell growth rate from proteomic expression data. The inset shows the relationship
between mean squared error and component number through fivefold cross validation. Three components were chosen for this model corresponding to the
minima of the curve. (C) VIP scores calculated for peptide with reference to the model in (B). The sign of the VIP score was artificially made negative if the weight of
the peptide in the model first component was <0. (D) The enrichment score of the p53-cdkn1a-ccnd1 signaling module as a function of the ranked position of all mea-
sured peptides. Node size and color in the accompanying network diagram are proportional to node degree. (E) The expression of the network components shown in (D)
across lines. Note that not all members correlate with size but rather covary with size correlates. (F) Top left: Relationship between p21mass fraction and cell growth rate.
Lines with the highest growth rates are circled for easier tracking through the subsequent graphs. Top right: Linear relationship between the p21 and CCND1 mass
fractions. Bottom left: The p21 mass fraction plotted against the p53 mass fraction; p53 and p21 expression appear mutually exclusive in large cell lines. In all cases,
size and color of the data points are proportional to cell growth rate.
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at multiple stages of the cell cycle (52), in effect, “simplifying” reg-
ulation. Through analysis of cell size variation, we found that our
cell line G1 distributions were most effectively modeled by a one-
(growth) stage cycle, implying the dominance of a small subset of
proliferative regulators. This suggests a more central role for the
RB1 subscaling observed in these cell lines.

We observed an up-regulated inflammatory response and de-
creased D/C ratio in larger cell lines—phenomena recently related
to the onset of cell senescence (17). However, while larger lines
appear morphologically senescent and exhibited a “senescent-like”
proteomic signature (14, 18), they are clearly not senescent, as they
grow faster than, and proliferate at a similar rate to, smaller cells.
This finding is particularly notable given the observed down-regu-
lation of canonical pro-biosynthetic phosphorylations (for example,
in the AKT-mTOR pathway; see fig. S5). This shows that larger cell
lines maintain high growth rates despite down-regulation of anabol-
ic pathways and decreased ribosomal mass fractions, qualities typi-
cally associated with decreased biosynthesis (53, 54).

The mechanism behind how our larger cell lines avoid senes-
cence and maintain cell growth is unclear but may relate to mecha-
nobiological processes, given the observed up-regulation of ECM
components and RAC GTPase signaling in larger cell lines. Me-
chanical activation of YAP/TAZ signaling has been observed to fa-
cilitate growth/proliferation under MAPK inhibition (55, 56).
Furthermore, cell volume has recently been tied to substrate stiff-
ness and adherence, engaging in a feedback system with YAP/
TAZ (57). Several studies suggest that actomyosin contractility
during cell spreading can also reduce cell volume through the expul-
sion of water, concentrating cell constituents (58, 59). Large cell
lines may activate cytoskeletal signaling to concentrate key biosyn-
thetic regulators and sustain growth.

Further, by interrogating the α (mitogenic signaling) and β
(growth rate) parameters of our model, we found that they were
best predicted by the expression of TP53 or CDKN1A/CCND1.
We observed that high CDKN1A/p21 and TP53 mass fractions
were mutually exclusive in large, high growth rate cell lines.
Whether the high expression of TP53 or CDKN1A in large cells is
critical to their proliferation or rather simply a signature of senes-
cent-like states is not clear. One simple explanation is that increased
size provokes stress and up-regulation of TP53 and its downstream
effector CDKN1A/p21, consistent with other studies (14, 17, 18, 60).
While in normal cells, this would lead to cell cycle arrest (61), acti-
vating mutations in BRAF and NRAS, combined with mutation in
tumor suppressors such as PTEN and can result in robust mitogenic
signaling and translation of CCND1, which may “override”
CDKN1A/p21-mediated checkpoint activation. However, in
KDBRAF-mutated cells, the dynamics of TP53-mediated up-regu-
lation of CDKN1A/p21 appear altered such that CDKN1A/p21 fails
to accumulate. This may allow cell cycle entry at the relatively low
levels of CCDN1 that are present in KDBRAF cells.

However, we cannot exclude the possibility that TP53 or
CDKN1A/p21 may actually facilitate progression in large cells, by
resolving stresses or acting at checkpoint proteins. For example,
TP53 or CDNK1A/p21 expression in large cells might act to slow
proliferation transiently (as cells grow), allowing engagement of
the DDR (61) or other processes that can ultimately promote cell
cycle entry.

Together, our data show that despite subscaling relationships
between key biosynthetic/proliferative regulators and cell size and

increased expression of stress markers, larger melanoma cell lines,
with lower D/C ratios, exhibit a higher growth rate than smaller
lines and maintain proliferation. Theoretical modeling suggests
that proliferation may be sustained under mitogenic inhibition by
decoupling growth and proliferative signaling (Fig. 8). Our work
provides a generalizable, integrative framework for understanding
the wiring and dynamics of signaling networks in the context of cel-
lular morphology.

METHODS
Cell culture
Cell lines were maintained in standard culture conditions [Dulbec-
co’s modified Eagle’s medium (DMEM) + 10% fetal bovine serum
(FBS); vessel; Corning Primaria 25-cm2 rectangular canted neck cell
culture flask with vented cap; PN: 353808]. Passage was carried out
using 0.25% trypsin-EDTA (Gibco) followed by centrifugation
(1000 rpm, 4 min) and resuspension in complete medium. Cell
counting was performed using a Countess automated cell counter
with trypan blue exclusion (Thermo Fisher Scientific).

Growth curves
Each cell line was seeded into three wells of a six-well tissue culture
plate [Falcon six-well clear flat-bottom tissue culture–treated multi-
well cell culture plates (Corning, PN: 353046)]. Cells were incubated
in DMEM mediawith 10% FBS and Primocin antibiotic at 37°C and
5% carbon dioxide. Cells were imaged at 4-hour intervals using the
Incucyte imaging system. Nine fields of view were imaged from each
well. Images were segmented using Ilastik image segmentation soft-
ware to identify individual cells. The number of cells in each field of
view was calculated using CellProfiler. Growth curves were plotted
using the ggplot2 library from the R programming language.
Average growth rates were computed as Gr = 2/3*(Mean_Area)/
(Doubling_time), where doubling time is the average time taken
for cell number to double in the population.

Immunostaining
Samples were fixed in freshly prepared 4% paraformaldehyde
(PFA)/phosphate-buffered saline (PBS) for 15 min. Slides were sub-
sequently permeabilized with 0.25% Triton/PBS for 10 min and
blocked with 0.5% bovine serum albumin (BSA)/0.02% glycine/
PBS for 30 min. Primary antibodies were introduced via the same
solution in a 1:1000 dilution and left on for 1 hour. The slides were
washed with PBS, and the same was carried out for the secondary
antibodies (kept in the dark to avoid bleaching). Hoechst stain was
added postsecondary (1:500) to stain DNA as was phalloidin to
stain actin.

Image acquisition and feature extraction
Image acquisition was performed using an Opera Cell:Explorer-au-
tomated spinning disk confocal microscope. Twenty fields of view
were imaged in each well (PerkinElmer, PhenoPlate 384-well, black,
optically clear flat-bottom, tissue culture treated, PN: 6057302). Cell
segmentation was performed using Acapella software (PerkinElm-
er). Nuclei were segmented using the Hoechst channel (405 to 450)
and cell bodies defined by the tubulin signal (568 to 603). Geomet-
ric features measured include the area of all subcellular regions; the
length, width, and elongation (length/width) of the cell and nucleus;
cell and nuclear roundness; and nucleus area/cytoplasm area.
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Statistical analysis of cell size
Statistical tests were carried out in the MATLAB (MathWorks) en-
vironment. Cell area data were “acosh”-transformed to induce a
normal distribution of areas in each cell line and standardize the
variances before ANOVA and Mann-Whitney/Wilcoxon tests.
Standardization success was determined using the Shapiro-Wilks

normalization test, ensuring that the data are normally distributed,
and the Bartlett test, to guarantee equal variances across lines.

FACS analysis
Cells were trypsinized and harvested into a 15-ml falcon tube for cell
counting. After centrifuging the falcon at 2400 rpm for 5 min, the
supernatant was discarded, and the cells were resuspended in 1-ml

Fig. 8. Summary of major findings.
(A) We leveraged the size heteroge-
neity of BRAF, NRAS, and KDBRAF-NRAS
melanomas to study how peptides,
transcripts, and phosphorylation
events scale with cell size and DNA-
cytoplasm ratio. (B) The scaling rela-
tionships identified implied decreased
biosynthesis and proliferative capacity
in larger cell lines; unexpectedly, we
found that larger cell lines exhibit
higher growth rates and maintain
proliferation. (C) We understood the
proliferation of larger cell lines using a
simple theoretical model. This relied
on the probability of passing a cell
cycle stage being related to size and a
size-dependent growth rate. Given
that size and growth signaling are in-
dependent, as is expected from our
cell lines mutations in the MAPK
pathway, growth provides a means to
correct reduced mitogen signaling in
our system. (D) Wewere aware that our
model represents a simplification, and
so we investigated possible molecular
influences of our model parameters by
constructing linear models predicting
them from the proteomic expression
data. Conducting GSEA on peptides
most strongly contributing to the
model, we identified the expression
and regulation of the TP53-CDKN1A-
CCND1 axis as a major predictor of cell
growth rate and α. Further examination
of expressions revealed two distinct
states of the system in larger cell lines.
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of 1% fetal calf serum in PBS. Three-milliliter ice cold 100% ethanol
was added dropwise to the cells while slowly vortexing and left to fix
overnight. The cells were then pelleted by centrifugation for 5 min at
2400 rpm and resuspended in 5 ml of PBS. They were incubated at
room temperature for 20 min. After centrifuging for 7 min at 1200
rpm, the pellet was resuspended in 1 ml of propidium iodide (PI)
solution through the cell strainer into a FACS tube. The PI solution
was made with 1:100 PI at 5 mg/ml and 1:1000 ribonuclease A at 10
mg/ml in PBS. The cell cycle composition was measured using the
BDSAria, and the data were analyzed using FlowJo. For EdU (5-
ethynyl-2′-deoxyuridine) incorporation assays, cells were treated
with a final concentration of 10 μM EdU before harvesting.
Instead of fixing with ethanol and staining with PI, cells were resus-
pended in 4% PFA for 15 min at room temperature. They were then
pelleted by centrifugation and PFA aspirated, followed by a wash.
Five hundred microliters of the appropriate Thermo Fisher Scien-
tific Click-iT reaction cocktail was added to each sample and incu-
bated for 30 min in the dark, according to the manufacturer ’s
instructions. Cells were washed once, stained, and then transferred
via a cell strainer into a FACS tube for analysis as above. Washes
used 1% BSA in PBS. Staining used Hoechst (20 μg/ml) added to
0.1% Triton-X in PBS. If applicable, 106 cells were seeded in
Falcon T25 flasks and incubated overnight in media containing
the appropriate aphidicolin concentration (total volume of 4 ml)
before FACS analysis of DNA content as above.

Proteomic sample preparation
Cell pellets were dissolved in 150 μl of lysis buffer containing 1%
sodium deoxycholate, 100 mM triethylammonium bicarbonate,
10% isopropanol, 50 mM NaCl, and Halt protease and phosphatase
inhibitor cocktail (100×) (Thermo Fisher Scientific, #78442) on ice
with pulsed probe sonication for 15 s. Samples were boiled at 90°C
for 5 min and sonicated for another 5 s. Protein concentration was
measured with the Quick Start Bradford Protein Assay (Bio-Rad)
according to the manufacturer’s instructions. Aliquots containing
100 μg of protein were reduced with 5 mM tris-2-carboxyethyl
phosphine for 1 hour at 60°C and alkylated with 10 mM iodoaceta-
mide for 30 min in the dark. Proteins were then digested overnight
by adding trypsin at final concentration of 75 ng/μl (Pierce). The
resultant peptides were labeled with the tandem mass tag (TMT)-
11plex reagents (Thermo Fisher Scientific) according to the manu-
facturer’s instructions and were combined in equal amounts into a
single tube. The combined sample was then dried with a centrifugal
vacuum concentrator. Two technical replicate TMT batches from
the same protein extracts were prepared to assess reproducibility.
One TMT batch was fractionated offline with high-pH reversed-
phase chromatography using the XBridge C18 column (2.1 mm
by 150 mm, 3.5 μm, Waters) on a Dionex UltiMate 3000 high-per-
formance liquid chromatography (HPLC) system. Mobile phase A
was 0.1% ammonium hydroxide (v/v), and mobile phase B was ace-
tonitrile and 0.1% ammonium hydroxide (v/v). The TMT-labeled
peptide mixture was reconstituted in 100 μl of mobile phase A
and fractionated with a gradient elution method at 0.2 ml/min as
follows: for 5-min isocratic at 5% B, for 35-min gradient to 35%
B, gradient to 80% B in 5 min, isocratic for 5 min, and re-equilibra-
tion to 5% B. Fractions were collected every 42 s and vacuum-dried.
The second TMT replicate batch was fractionated with the Pierce
High pH Reversed-Phase Peptide Fractionation Kit according to
the manufacturer’s instructions.

Phosphopeptide enrichment
Peptide fractions from the first TMT batch were reconstituted in 10
μl of 20% isopropanol and 0.5% formic acid binding solution and
were loaded on 10 μl of phosphopeptide enrichment immobilized
metal affinity chromatography resin (PHOS-Select Iron Affinity
Gel, Sigma-Aldrich) already washed and conditioned with
binding solution in custom-made filter tips fitted on Eppendorf
tube caps. After 2 hours of binding at room temperature, the
resin was washed three times with 40 μl of binding solution at
300 g, and the flow-through solutions were collected for total pro-
teome analysis. Phosphopeptides were eluted three times with 70 μl
of 40% acetonitrile and 400 mM ammonium hydroxide solution.
Eluents and flow-through samples were vacuum-dried and stored
at −20°C until the liquid chromatography–mass spectrometry
(LC-MS) analysis.

LC-MS analysis
LC-MS analysis was performed on the Dionex UltiMate UHPLC
3000 system coupled with the Orbitrap Lumos mass spectrometer
(Thermo Fisher Scientific). Peptides were loaded to the Acclaim
PepMap 100, 100 μm by 2 cm C18, 5 μm, 100 A. trapping column
at a flow rate of 10 μl/min. The sample was then subjected to a gra-
dient elution on the Acclaim PepMap RSLC (75 μm by 50 cm, 2 μm,
100 Å) C18 capillary column at 45°C. Mobile phase A was 0.1%
formic acid, and mobile phase B was 80% acetonitrile and 0.1%
formic acid. The separation method at flow rate 300 nl/min was
as follows: for 90 min (or 150 min for the replicate batch) gradient
from 10 to 38% B, for 10 min up to 95% B, for 5 min isocratic at 95%
B, reequilibration to 10% B in 5 min, for 10 min isocratic at 10%
B. Precursors between 375 and 1500 mass/charge ratio were selected
with mass resolution of 120 K, automatic gain control (AGC)
4 × 105, and 50 ms ion trap (IT) with the top speed mode in 3 s
and were isolated for collision-induced dissociation (CID) fragmen-
tation with quadrupole isolation width 0.7 Th. Collision energy
(CE) was 35% with AGC 1 × 104 and IT 50 ms. MS3 quantification
was obtained with Higher-energy C-trap dissociation (HCD) frag-
mentation of the top five most abundant CID fragments isolated
with Synchronous Precursor Selection. Quadrupole isolation
width was 0.7 Th, CE 65%, AGC 1 × 105, and 105 ms IT. The
HCD MS3 spectra were acquired for the mass range 100 to 500
with 50 K resolution. Targeted precursors were dynamically exclud-
ed for further isolation and activation for 45 s with 7 parts per
million (ppm) mass tolerance. Phosphopeptide samples were ana-
lyzed with an HCD method at the MS2 level with CE 38%, AGC
1 × 105 and max IT 105 ms.

Database search and protein quantification
The SequestHT search enginewas used to analyze the acquired mass
spectra in Proteome Discoverer 2.2 (Thermo Fisher Scientific) for
protein identification and quantification. Precursor mass tolerance
was 20 ppm, and fragment ion mass tolerance was 0.5 Da for the
CID and 0.02 Da for the HCD spectra. Spectra were searched for
fully tryptic peptides with maximum of two miss-cleavages.
TMT6plex at N terminus/K and carbamidomethyl at C were
defined as static modifications. Dynamic modifications included
oxidation of M and deamidation of N/Q. Dynamic phosphorylation
of S/T/Y was included for the phospho-enriched samples. Peptide
confidence was estimated with the percolator node. Peptide FDR
was set at 0.01, and validation was based on q value and decoy
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database search. Spectra were searched against reviewed UniProt
mouse protein entries. The reporter ion quantifier node included
a TMT 11plex quantification method with an integration window
tolerance of 15 ppm and integration method based on the most con-
fident centroid peak at the MS3 or MS2 level. Only unique peptides
were used for quantification, considering protein groups for peptide
uniqueness. Peptides with average reporter signal-to-noise of >3
were used for quantification.

Proteomic/transcriptomic analysis
Peptide abundances were scaled relative to other detected peptides
in the sample such that they reflect abundance/total protein mass.
The expression of each peptide was correlated to average cell line
area to derive a correlation coefficient, R, and a fold change was cal-
culated between cells lying above or below the mean. Peptides
scoring Fc > 1.5 or <0.66 and |R| > 0.55 were taken as hit super/sub-
scaling peptides. The Fc threshold of 1.5 stems from a power anal-
ysis: An Fc of 1.5 is the minimal detectable difference between
groups we can detect by a t test between small and large cell line
clusters (centered about “100 scaled units”) when accepting a
true-positive rate of 0.95 [where n = 5 and 6, cluster SDs were
taken to be 20 scaled units (the SD of expressions within a class)].
The fold change was defined as

Fc ¼
MðAÞ

A
;when

1
2
½AþMðAÞ� ¼ 100 ð9Þ

where “A” denotes the mean abundance of the peptide in cluster 1,
and M(A) denotes the minimal value of the mean of cluster 2 for
there to be a detectable difference in mean as above. The “100”
stems from all peptides being scaled across line to have a mean
value of 100. This value was calculated using the “samplesizepwr”
function in MATLAB (MathWorks) statistics and machine learning
toolbox. Transcripts are treated identically to peptides.

Network analysis
High-scoring proteins are taken forward and entered into STRING
(41) to screen for interactions within the hits. Accepted interactions
were those identified experimentally or identified in previous coex-
pression studies and achieved a confidence value > 0.4. This
network was then exported to Cytoscape (62) for ontological anal-
ysis via the SAFE (42) tool. All “biological process” annotations for
each node in the network were derived from Geneontology.org’s
downloadable database (43–46). A binary matrix was constructed;
each node (row) would receive either a 1 or 0 in each column (an-
notation) depending on whether the node was associated with the
label. This was then entered into the SAFE Cytoscape plugin, where
we used default settings besides a percentile threshold of 10 and
minimum neighborhood size of 5 (data S5). A second binary
matrix was then constructed now with an annotation set reflecting
whether the nodewas an expression or phosphorylation hit in big or
small cells. The same settings were used for SAFE.

RNA extraction, quality control, and RNA sequencing
RNA from 11 cell lines was extracted using the RNeasy Mini Kit
(Qiagen, #74104) according to the manufacturer’s protocol. The
evaluation of the isolated RNA integrity and quantity was carried
out by the Agilent TapeStation system using an RNA ScreenTape
(Agilent Technologies, #5067-5576).

For the mRNA library preparation, 4000 ng of total RNA was
treated with TurboDNase to remove genomic DNA contamination,
(Invitrogen, #AM1907). PolyA RNA was selected from 1000 ng of
the purified RNA using NEBNext mRNA magnetic isolation
module [New England BioLabs (NEB), #E7490] following the man-
ufacturer’s directions. From the resulting mRNA, strand-specific li-
braries were created using the NEBNext Ultra II Directional RNA
Library Prep Kit for Illumina (NEB, #E7760). Final libraries were
quantified using quantitative polymerase chain reaction and clus-
tered at a molarity of 300 pM. Sequencing was performed on an Il-
lumina NovaSeq 6000 (Illumina) using paired end ×100 cycles v1.0
chemistry, to achieve coverage of 25 million reads per sample.

Model algorithm
The initial cell area distribution is considered a delta function cen-
tered on k/α (the expected mean of the distribution). Every gener-
ation, the area distribution is convolved with the mass-gain
distribution, computed by performing an inverse Fourier transform
on the product of the two distributions respective Fourier trans-
forms. This produces the division area distribution, Ad(A), which
must be transformed to Ad(2A) to capture the effects of cell divi-
sion. We perform this by setting Ab(Ax) = Ad(Ai) + Ad(Ai + 1),
where “I” = xn − xn-1 for all x, where Ab denotes the birth size dis-
tribution. This is then convolved with the gain distribution as before
to generate the next division distribution and so on until a desired
number of generations has been reached.

Numerical simulation
An initial population of 1000 cells was assigned an α and β value and
a random initial area. At each time step, the division probability for
each cell is calculated, according to P = αAdiv, and a random
number, “r,” is drawn from a flat distribution. Should r be less
than the division probability of a cell, the cell divides symmetrically
in two, adding a new cell to the population with half the size of the
mother, and halving the mother size. If r is greater than the division
probability, then the cell size increases according to β = kAdiv. This
system continues until a final cell count of 20,000 was achieved.

Model fitting procedure
Initially, α values were exhaustively tested (β is determined from the
proliferation and area measurements on a per cell line basis). For
each, we calculated the Kullbeck-Liebler divergence between the ex-
perimental and simulated data

DKLðPkQÞ ¼
X

x[X
PðxÞlog10

PðxÞ
QðxÞ

� �

ð10Þ

Having identified approximate minima from the low-resolution
parameter screen, we used the values defining this region as an
initial state for a stochastic gradient descent minimizing along the
gradient

dDKLðPkQÞ
dp

¼ 4½PðxÞ � QðxÞ�QðxÞ ð11Þ

Model fitting was conducted within the commercial MATLAB
(MathWorks) software’s machine learning toolbox.
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Partial least squares regression
Regression analyses were conducted with the MATLAB (Math-
Works) environment using the plsregress function from the
machine learning toolbox. Partial least square regression was select-
ed as the method to help mitigate the influence of colinearity in the
predictor dataset. Model components were selected through fivefold
cross validation using the elbow method on the mean square error
as a function of component number. All peptides were mean-cen-
tralized before model construction. Fit quality was assessed through
the r-squared metric.

Feature importance to PLSR models
The influence a feature has on a model was estimated through VIP
scores calculated as

VIPj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XF

f¼1
w2

jf � SSYf � J

SSY total � F

v
u
u
u
u
t

ð12Þ

wjf is the weight value for j variable and f component, and SSYf is the
sum of squares of explained variance for the fth component and J
number of X variables. SSYtotal is the total sum of squares explained
of the dependent variable, and F is the total number of components.
Features with a VIP score greater than 1 were taken as major drivers
of the model. VIP scores of peptides with negative weights in the
first PLSR component were made negative in preparation for en-
richment analysis.

Gene set enrichment analysis
GSEA was conducted using the “WebGestalt” web application on
our ranked list of peptides (VIP score defined the rank) (63). We
used the “network” and “PPI_BIOGRID” enrichment categories
to identify enriched subnetworks in the high- and low-scoring pep-
tides. Parameters used were as follows: minimum IDs per category =
5; maximum = 10,000; permutations = 1000. Enrichments with an
FDR < 0.05 were taken as hit subnetworks. We conducted an addi-
tional over-enrichment analysis using the “GOrilla” webtool com-
paring hit peptides, as defined in the “Proteomic/transcriptomic
analysis” section, against all detected species. Default parameters
were used.
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