845 research outputs found
Efficient quantum circuits for port-based teleportation
Port-based teleportation (PBT) is a variant of quantum teleportation that, unlike the canonical protocol by Bennett et al., does not require a correction operation on the teleported state. Since its introduction by Ishizaka and Hiroshima in 2008, no efficient implementation of PBT was known. We close this long-standing gap by building on our recent results on representations of partially transposed permutation matrix algebras and mixed quantum Schur transform. We describe efficient quantum circuits for probabilistic and deterministic PBT protocols on n ports of arbitrary local dimension, both for EPR and optimized resource states. We describe two constructions based on different encodings of the Gelfand-Tsetlin basis for n qudits: a standard encoding that achieves OË(n) time and O(n log (n)) space complexity, and a Yamanouchi encoding that achieves OË(n2) time and O(log(n)) space complexity, both for constant local dimension and target error. We also describe efficient circuits for preparing the optimal resource states
Entropy power inequalities for qudits
Shannon's entropy power inequality (EPI) can be viewed as a statement of concavity of an entropic function of a continuous random variable under a scaled addition rule: f (âa X + â1 - aY) â„ af(X)+(1 - a)f(Y) âa â [0,1]. Here, X and Y are continuous random variables and the function f is either the differential entropy or the entropy power. König and Smith [IEEE Trans. Inf. Theory 60(3), 1536-1548 (2014)] and De Palma, Mari, and Giovannetti [Nat. Photonics 8(12), 958-964 (2014)] obtained quantum analogues of these inequalities for continuous-variable quantum systems, where X and Y are replaced by bosonic fields and the addition rule is the action of a beam splitter with transmissivity a on those fields. In this paper, we similarly establish a class of EPI analogues for d-level quantum systems (i.e., qudits). The underlying addition rule for which these inequalities hold is given by a quantum channel that depends on the parameter a â [0,1] and acts like a finite-dimensional analogue of a beam splitter with transmissivity a, converting a two-qudit product state into a single qudit state. We refer to this channel as a partial swap channel because of the particular way its output interpolates between the states of the two qudits in the input as a is changed from zero to one. We obtain analogues of Shannon's EPI, not only for the von Neumann entropy and the entropy power for the output of such channels, but also for a much larger class of functions. This class includes the RĂ©nyi entropies and the subentropy. We also prove a qudit analogue of the entropy photon number inequality (EPnI). Finally, for the subclass of partial swap channels for which one of the qudit states in the input is fixed, our EPIs and EPnI yield lower bounds on the minimum output entropy and upper bounds on the Holevo capacity.KA acknowledges support by an Odysseus Grant of the Flemish FWO. MO acknowledges financial support from European Union under project QALGO (Grant Agreement No. 600700) and by a Leverhulme Trust Early Career Fellowhip (ECF-2015-256)
Quantum rejection sampling
Rejection sampling is a well-known method to sample from a target
distribution, given the ability to sample from a given distribution. The method
has been first formalized by von Neumann (1951) and has many applications in
classical computing. We define a quantum analogue of rejection sampling: given
a black box producing a coherent superposition of (possibly unknown) quantum
states with some amplitudes, the problem is to prepare a coherent superposition
of the same states, albeit with different target amplitudes. The main result of
this paper is a tight characterization of the query complexity of this quantum
state generation problem. We exhibit an algorithm, which we call quantum
rejection sampling, and analyze its cost using semidefinite programming. Our
proof of a matching lower bound is based on the automorphism principle which
allows to symmetrize any algorithm over the automorphism group of the problem.
Our main technical innovation is an extension of the automorphism principle to
continuous groups that arise for quantum state generation problems where the
oracle encodes unknown quantum states, instead of just classical data.
Furthermore, we illustrate how quantum rejection sampling may be used as a
primitive in designing quantum algorithms, by providing three different
applications. We first show that it was implicitly used in the quantum
algorithm for linear systems of equations by Harrow, Hassidim and Lloyd.
Secondly, we show that it can be used to speed up the main step in the quantum
Metropolis sampling algorithm by Temme et al.. Finally, we derive a new quantum
algorithm for the hidden shift problem of an arbitrary Boolean function and
relate its query complexity to "water-filling" of the Fourier spectrum.Comment: 19 pages, 5 figures, minor changes and a more compact style (to
appear in proceedings of ITCS 2012
Hamiltonian simulation with optimal sample complexity
© 2017 Author(s). We investigate the sample complexity of Hamiltonian simulation: how many copies of an unknown quantum state are required to simulate a Hamiltonian encoded by the density matrix of that state? We show that the procedure proposed by Lloyd, Mohseni, and Rebentrost [Nat. Phys., 10(9):631-633, 2014] is optimal for this task. We further extend their method to the case of multiple input states, showing how to simulate any Hermitian polynomial of the states provided. As applications, we derive optimal algorithms for commutator simulation and orthogonality testing, and we give a protocol for creating a coherent superposition of pure states, when given sample access to those states. We also show that this sample-based Hamiltonian simulation can be used as the basis of a universal model of quantum computation that requires only partial swap operations and simple single-qubit states.S.K. and C.Y.L. are funded by the Department of Defense. G.H.L. is funded by the NSF CCR and the ARO quantum computing projects. M.O. acknowledges Leverhulme Trust Early Career Fellowship (ECF-2015-256) and European Union project QALGO (Grant Agreement No. 600700) for financial support. T.J.Y. thanks the DoD, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a. The authors are grateful to the University of Maryland Librariesâ Open Access Publishing Fund and the Massachusetts Institute of Technology Open Access Publishing Fund for partial funding for open access
On the adiabatic condition and the quantum hitting time of Markov chains
We present an adiabatic quantum algorithm for the abstract problem of
searching marked vertices in a graph, or spatial search. Given a random walk
(or Markov chain) on a graph with a set of unknown marked vertices, one can
define a related absorbing walk where outgoing transitions from marked
vertices are replaced by self-loops. We build a Hamiltonian from the
interpolated Markov chain and use it in an adiabatic quantum
algorithm to drive an initial superposition over all vertices to a
superposition over marked vertices. The adiabatic condition implies that for
any reversible Markov chain and any set of marked vertices, the running time of
the adiabatic algorithm is given by the square root of the classical hitting
time. This algorithm therefore demonstrates a novel connection between the
adiabatic condition and the classical notion of hitting time of a random walk.
It also significantly extends the scope of previous quantum algorithms for this
problem, which could only obtain a full quadratic speed-up for state-transitive
reversible Markov chains with a unique marked vertex.Comment: 22 page
On non-adaptive quantum chosen-ciphertext attacks and Learning with Errors
Large-scale quantum computing is a signiïŹcant threat to classical public-key cryptography. In strong âquantum accessâ security models, numerous symmetric-key cryptosystems are also vulnerable. We consider classical encryption in a model which grants the adversary quantum oracle access to encryption and decryption, but where the latter is restricted to non-adaptive (i.e., pre-challenge) queries only. We deïŹne this model formally using appropriate notions of
On quantum chosen-ciphertext attacks and learning with errors
Quantum computing is a significant threat to classical public-key cryptography. In strong âquantum accessâ security models, numerous symmetric-key cryptosystems are also vulnerable. We consider classical encryption in a model which grants the adversary quantum oracle access to encryption and decryption, but where the latter is restricted to non-adaptive (i.e., pre-challenge) queries only. We define this model formally using appropriate notions of ciphertext indistinguishability and semantic security (which are equivalent by standard arguments) and call it QCCA1 in analogy to the classical CCA1 security model. Using a bound on quantum random-access codes, we show that the standard PRF-based encryption schemes are QCCA1-secure when instantiated with quantum-secure primitives. We then revisit standard IND-CPA-secure Learning with Errors (LWE) encryption and show that leaking just one quantum decryption query (and no other queries or leakage of any kind) allows the adversary to recover the full secret key with constant success probability. In the classical setting, by contrast, recovering the key requires a linear number of decryption queries. The algorithm at the core of our attack is a (large-modulus version of) the well-known Bernstein-Vazirani algorithm. We emphasize that our results should not be interpreted as a weakness of these cryptosystems in their stated security setting (i.e., post-quantum chosen-plaintext secrecy). Rather, our results mean that, if these cryptosystems are exposed to chosen-ciphertext attacks (e.g., as a result of deployment in an inappropriate real-world setting) then quantum attacks are even more devastating than classical ones
- âŠ