64 research outputs found

    MIR-99a and MIR-99b Modulate TGF-Ξ² Induced Epithelial to Mesenchymal Plasticity in Normal Murine Mammary Gland Cells

    Get PDF
    Epithelial to mesenchymal transition (EMT) is a key process during embryonic development and disease development and progression. During EMT, epithelial cells lose epithelial features and express mesenchymal cell markers, which correlate with increased cell migration and invasion. Transforming growth factor-Ξ² (TGF-Ξ²) is a multifunctional cytokine that induces EMT in multiple cell types. The TGF-Ξ² pathway is regulated by microRNAs (miRNAs), which are small non-coding RNAs regulating the translation of specific messenger RNAs

    In Silico Investigation of Potential Src Kinase Ligands from Traditional Chinese Medicine

    Get PDF
    Src kinase is an attractive target for drug development based on its established relationship with cancer and possible link to hypertension. The suitability of traditional Chinese medicine (TCM) compounds as potential drug ligands for further biological evaluation was investigated using structure-based, ligand-based, and molecular dynamics (MD) analysis. Isopraeroside IV, 9alpha-hydroxyfraxinellone-9-O-beta-D-glucoside (9HFG) and aurantiamide were the top three TCM candidates identified from docking. Hydrogen bonds and hydrophobic interactions were the primary forces governing docking stability. Their stability with Src kinase under a dynamic state was further validated through MD and torsion angle analysis. Complexes formed by TCM candidates have lower total energy estimates than the control Sacaratinib. Four quantitative-structural activity relationship (QSAR) in silico verifications consistently suggested that the TCM candidates have bioactive properties. Docking conformations of 9HFG and aurantiamide in the Src kinase ATP binding site suggest potential inhibitor-like characteristics, including competitive binding at the ATP binding site (Lys295) and stabilization of the catalytic cleft integrity. The TCM candidates have significantly lower ligand internal energies and are estimated to form more stable complexes with Src kinase than Saracatinib. Structure-based and ligand-based analysis support the drug-like potential of 9HFG and aurantiamide and binding mechanisms reveal the tendency of these two candidates to compete for the ATP binding site

    Phosphoprotein Associated with Glycosphingolipid-Enriched Microdomains Differentially Modulates Src Kinase Activity in Brain Maturation

    Get PDF
    Src family kinases (SFK) control multiple processes during brain development and function. We show here that the phosphoprotein associated with glycosphigolipid-enriched microdomains (PAG)/Csk binding protein (Cbp) modulates SFK activity in the brain. The timing and localization of PAG expression overlap with Fyn and Src, both of which we find associated to PAG. We demonstrate in newborn (P1) mice that PAG negatively regulates Src family kinases (SFK). P1 Pag1-/- mouse brains show decreased recruitment of Csk into lipid rafts, reduced phosphorylation of the inhibitory tyrosines within SFKs, and an increase in SFK activity of >/β€Š=β€Š50%. While in brain of P1 mice, PAG and Csk are highly and ubiquitously expressed, little Csk is found in adult brain suggesting altered modes of SFK regulation. In adult brain Pag1-deficiency has no effect upon Csk-distribution or inhibitory tyrosine phosphorylation, but kinase activity is now reduced (βˆ’20–30%), pointing to the development of a compensatory mechanism that may involve PSD93. The distribution of the Csk-homologous kinase CHK is not altered. Importantly, since the activities of Fyn and Src are decreased in adult Pag1-/- mice, thus presenting the reversed phenotype of P1, this provides the first in vivo evidence for a Csk-independent positive regulatory function for PAG in the brain

    MicroRNA and mRNA expression profiling in rat acute respiratory distress syndrome

    Get PDF
    Background: Acute respiratory distress syndrome (ARDS) is characterized by pulmonary epithelial injury and extensive inflammation of the pulmonary parenchyma. Systematic analyses of microRNA (miRNA) and mRNA expression profiling in ARDS provide insights into understanding of molecular mechanisms of the pathogenesis of ARDS. The objective of this study was to identify miRNA and mRNA interactions in a rat model of ARDS by combining miRNA and mRNA microarray analyses.Methods: Rat model of ARDS was induced by saline lavage and mechanical ventilation. The expression profiles of both mRNAs and miRNAs in rat ARDS model were performed by microarray analyses. Microarray data were further verified by quantitative RT-PCR. Functional annotation on dys-regulated mRNAs and miRNAs was carried out by bioinformatics analysis.Results: The expression of 27 miRNAs and 37 mRNAs were found to be significantly changed. The selected miRNAs and genes were further verified by quantitative real-time PCR. The down-regulated miRNAs included miR-24, miR-26a, miR-126, and Let-7a, b, c, f. The up-regulated miRNAs were composed of miR-344, miR-346, miR-99a, miR-127, miR-128b, miR-135b, and miR-30a/b. Gene ontology and functional annotation analyses indicated that up-regulated mRNAs, such as Apc, Timp1, and Sod2, were involved in the regulation of apoptosis. Bioinformatics analysis showed the inverse correlation of altered miRNAs with the expression of their predicted target mRNAs. While Sod2 was inversely correlated with Let-7a, b, c, f., Ebf1 and Apc were inversely correlated with miR-24 and miR-26a, respectively. miR-26a, miR-346, miR-135b, miR-30a/b, miR-344, and miR-18a targeted multiple altered mRNAs. Gabrb1, Sod2, Eif2ak1, Fbln5, and Tspan8 were targeted by multiple altered miRNAs.Conclusion: The expressions of miRNAs and mRNAs were altered in a rat model of ARDS. The identified miRNA-mRNA pairs may play critical roles in the pathogenesis of ARDS.Peer reviewedPathobiologyOklahoma Center for Respiratory and Infectious DiseasesPhysiological Science

    Simulation for Energy Savings in Pneumatic System

    No full text

    Targeting AMAP1 and cortactin binding bearing an atypical src homology 3/proline interface for prevention of breast cancer invasion and metastasis

    No full text
    Invasive potentials of carcinomas greatly contribute to their metastasis, which is a major threat in most cancers. We have recently shown that Arf6 plays a pivotal role in breast cancer invasive activities and identified AMAP1 as an effector of GTP-Arf6 in invasion. Expression of AMAP1 correlates well with invasive phenotypes of primary tumors of the human breast. We also have shown that AMAP1 functions by forming a trimeric protein complex with cortactin and paxillin. In this complex, AMAP1 binds to the src homology 3 (SH3) domain of cortactin via its proline-rich peptide, SKKRPPPPPPGHKRT. SH3 domains are known to bind generally to the proline-rich ligands with a one-to-one stoichiometry. We found that AMAP1/cortactin binding is very atypical in its stoichiometry and interface structure, in which one AMAP1 proline-rich peptide binds to two cortactin SH3 domains simultaneously. We made a cell-permeable peptide derived from the AMAP1 peptide, and we show that this peptide specifically blocks AMAP1/cortactin binding, but not other canonical SH3/proline bindings, and effectively inhibits breast cancer invasion and metastasis. Moreover, this peptide was found to block invasion of other types of cancers, such as glioblastomas and lung carcinomas. We also found that a small-molecule compound, UCS15A, which was previously judged as a weak inhibitor against canonical SH3/proline bindings, effectively inhibits AMAP1/cortactin binding and breast cancer invasion and metastasis. Together with fine structural analysis, we propose that the AMAP1/cortactin complex, which is not detected in normal mammary epithelial cells, is an excellent drug target for cancer therapeutics
    • …
    corecore