226 research outputs found

    Adjusting Community Survey Data Benchmarks for External Factors

    Get PDF
    Abstract. Using U.S. resident survey data from the National Community Survey in combination with public data from the U.S. Census and additional sources, a Voting Regressor Model was developed to establish fair benchmark values for city performance. These benchmarks were adjusted for characteristics the city cannot easily influence that contribute to confidence in local government, such as population size, demographics, and income. This adjustment allows for a more meaningful comparison and interpretation of survey results among individual cities. Methods explored for the benchmark adjustment included cluster analysis, anomaly detection, and a variety of regression techniques, including random forest, ridge, decision tree, support vector, gradient boosting, KNN, and ensembles. The final models used ensemble regression methods to predict trust in government and identify important features and cluster analysis to assign similar cities to clusters for comparison. The voting regression model predictions were compared to the actual raw scores, and cities that scored significantly above and below predictions were identified. These overperformers and underperformers may have additional factors not accounted for within the model contributing to their score

    Combining dental and skeletal evidence in age classification: Pilot study in a sample of Italian sub-adults

    Get PDF
    Background: Dental and skeletal maturation have proved to be reliable evidence for estimating age of children and prior studies and internationally accredited guidelines recommend to evaluate both evidence in the same subject to reduce error in age prediction. Nevertheless the ethical and legal justification of procedures that imply a double exposition of children stands as a relevant issue. This study aims to evaluate the accuracy of age estimation provided by a combination of skeletal and dental methods applied in the same sample of children. / Materials and methods: The sample consisted of 274 orthopantomographies and left hand-wrist X-rays of Italian children, (aged between 6 and 17 years) taken on the same day. Greulich and Pyle’s (GP), Tanner-Whitehouse’s version 3 (TW3) and Willems’ (W) and the Demirjian’s (D) methods were respectively applied for estimating skeletal and dental age. A combination of skeletal and dental age estimates through Linear Discriminant Analysis (LDA) is proposed to obtain a classifier respect to an age threshold. / Results: The combination of D and TW3 obtained an improvement of accuracy in classifying female subjects respect to the 12 years threshold respect to the original methods (from about 77% using either original methods to 83.3% combining TW3 + D) as well as a consistent reduction of false positives rate (from 17% to 21% for original methods to 5.6% with TW3 + D). For males the LDA classifier (based on TW3 and W) enable a small improvement in accuracy, whilst the decreasing of false positives was as noticeable as for females (from 17.6 to 14.1% for original methods to 6.2% combining TW3 + W). / Conclusions: Although the study is influenced by the limited size and the uneven age distribution of the sample, the present findings support the conclusion that age assessment procedures based on both dental and skeletal age estimation can improve the accuracy and reduce the occurrence of false positives

    Fluid geochemistry of the Los Humeros geothermal field (LHGF - Puebla, Mexico): New constraints for the conceptual model

    Get PDF
    Geothermal power in Mexico is mainly produced in four geothermal fields operated by the Comision Federal de Electricidad (CFE): Cerro Prieto, Los Azufres, Los Humeros, and Las Tres Virgenes. The Los Humeros Geothermal Field (LHGF) is ranked third in terms of generated capacity, and in the last decade its installed capacity has doubled (up to 95.0 MW). Further increases in the geothermal power generation capacity in Mexico are planned, and thus the LHGF warrants further examination. The development and growth phases of any geothermal project must start from an awareness of the conceptual model of the natural system studied. The recharge mechanism, feeding zones, and fluid flow-path must be identified, along with the estimation of the temperature at the productive level and of phase separation (liquid - steam). To accomplish this, detailed fluid geochemical surveys were carried out in June 2017 and March 2018, in which 57 and 87 samples were collected, respectively, from cold and thermal springs, water wells and maar lakes located around and inside the LHGF. Samples from fumaroles inside the producing area were also collected for the first time, together with fluid from re-injection wells. The presence of a meteoric component, which plays an important role at the regional scale, is confirmed by the chemical and isotope data, and its contribution in terms of recharge may be higher than previously assumed. The Sierra Madre Oriental, on the west side of the LHGF, is characterized by widespread outcrops of limestone belonging to the same geological formation as those at the bottom of the LHGF. The isotope composition (delta D and delta O-18, respectively -77.3 parts per thousand and -10.50 parts per thousand for the hypothetical Infiltration Water IW) is similar to that observed in cold springs located in the Sierra Madre Oriental, and from this the evolution of isotopes in the liquid-rock-steam system during water-rock interaction and phase separation processes can be modelled. Thus, the experimental data obtained for natural gas emissions (fumarolic condensates) and for geothermal fluids can be reproduced. These findings suggest that geothermal fluids in the LHGF are likely to be derived from meteoric water infiltrating (IW) the limestone outcrops of the Sierra Madre Oriental. During their flow-path, the infiltrating waters exchange isotopes at a high temperature with the crustal rocks, which have a much higher O-18/O-16 ratio, resulting in a shift towards higher delta O-18 (-4.35 parts per thousand +/- 1) as the water O exchanges with rock O. The vapor phase can be separated from this deep water (DW) and it is discharged from the fumarolic effluents of Loma Blanca. Single Step Vapor Separation (SSVS) and Continuous Steam Separation processes (CSS) were modelled using stable isotopes of water. The results of geochemical modeling agree with available data for geothermal liquids discharged from several geothermal wells, suggesting that steam separation may be interpreted either as SSVS or CSS. Other processes can affect the chemistry and isotope composition of geothermal fluids (e.g. phase segregation, gas exchange, contributions from magmatic-volcanic deep fluids and re-injection fluids). The proposed conceptual model is consistent with both the geochemical data and the geological setting, and provides a useful point of reference for examining the fluid flow-path and geochemical processes active in the LHGF, at least at a general level.An involvement of magmatic-volcanic deep fluids in the feeding mechanism of the geothermal system cannot be excluded at priori, but the regional meteoric end-member is supported by the data and it seems the most important component

    Geological and geophysical characterization of the southeastern side of the High Agri Valley (southern Apennines, Italy)

    Get PDF
    Abstract. In the frame of a national project funded by Eni S.p.A. and developed by three institutes of the National Research Council (the Institute of Methodologies for Environmental Analysis, the Institute of Research for Hydrogeological Protection and the Institute for Electromagnetic Sensing of the Environment), a multidisciplinary approach based on the integration of satellite, aero-photogrammetric and in situ geophysical techniques was applied to investigate an area located in the Montemurro territory in the southeastern sector of the High Agri Valley (Basilicata Region, southern Italy). This paper reports the results obtained by the joint analysis of in situ geophysical surveys, aerial photos interpretation, morphotectonic investigation, geological field survey and borehole data. The joint analysis of different data allowed us (1) to show the shallow geological and structural setting, (2) to detect the geometry of the different lithological units and their mechanical and dynamical properties, (3) to image a previously unmapped fault beneath suspected scarps/warps and (4) to characterize the geometry of an active landslide affecting the study area

    Fluid geochemistry of the Los Humeros geothermal field (LHGF - Puebla, Mexico): New constraints for the conceptual model

    Get PDF
    Geothermal power in Mexico is mainly produced in four geothermal fields operated by the Comision Federal de Electricidad (CFE): Cerro Prieto, Los Azufres, Los Humeros, and Las Tres Virgenes. The Los Humeros Geothermal Field (LHGF) is ranked third in terms of generated capacity, and in the last decade its installed capacity has doubled (up to 95.0 MW). Further increases in the geothermal power generation capacity in Mexico are planned, and thus the LHGF warrants further examination. The development and growth phases of any geothermal project must start from an awareness of the conceptual model of the natural system studied. The recharge mechanism, feeding zones, and fluid flow-path must be identified, along with the estimation of the temperature at the productive level and of phase separation (liquid - steam). To accomplish this, detailed fluid geochemical surveys were carried out in June 2017 and March 2018, in which 57 and 87 samples were collected, respectively, from cold and thermal springs, water wells and maar lakes located around and inside the LHGF. Samples from fumaroles inside the producing area were also collected for the first time, together with fluid from re-injection wells. The presence of a meteoric component, which plays an important role at the regional scale, is confirmed by the chemical and isotope data, and its contribution in terms of recharge may be higher than previously assumed. The Sierra Madre Oriental, on the west side of the LHGF, is characterized by widespread outcrops of limestone belonging to the same geological formation as those at the bottom of the LHGF. The isotope composition (delta D and delta O-18, respectively -77.3 parts per thousand and -10.50 parts per thousand for the hypothetical Infiltration Water IW) is similar to that observed in cold springs located in the Sierra Madre Oriental, and from this the evolution of isotopes in the liquid-rock-steam system during water-rock interaction and phase separation processes can be modelled. Thus, the experimental data obtained for natural gas emissions (fumarolic condensates) and for geothermal fluids can be reproduced. These findings suggest that geothermal fluids in the LHGF are likely to be derived from meteoric water infiltrating (IW) the limestone outcrops of the Sierra Madre Oriental. During their flow-path, the infiltrating waters exchange isotopes at a high temperature with the crustal rocks, which have a much higher O-18/O-16 ratio, resulting in a shift towards higher delta O-18 (-4.35 parts per thousand +/- 1) as the water O exchanges with rock O. The vapor phase can be separated from this deep water (DW) and it is discharged from the fumarolic effluents of Loma Blanca. Single Step Vapor Separation (SSVS) and Continuous Steam Separation processes (CSS) were modelled using stable isotopes of water. The results of geochemical modeling agree with available data for geothermal liquids discharged from several geothermal wells, suggesting that steam separation may be interpreted either as SSVS or CSS. Other processes can affect the chemistry and isotope composition of geothermal fluids (e.g. phase segregation, gas exchange, contributions from magmatic-volcanic deep fluids and re-injection fluids). The proposed conceptual model is consistent with both the geochemical data and the geological setting, and provides a useful point of reference for examining the fluid flow-path and geochemical processes active in the LHGF, at least at a general level. An involvement of magmatic-volcanic deep fluids in the feeding mechanism of the geothermal system cannot be excluded at priori, but the regional meteoric end-member is supported by the data and it seems the most important component

    Geological and geophysical characterization of the southeastern side of the High Agri Valley (southern Apennines, Italy)

    Get PDF
    In the frame of a national project funded by Eni S.p.A. and developed by three institutes of the National Research Council (the Institute of Methodologies for Environmental Analysis, the Institute of Research for Hydrogeological Protection and the Institute for Electromagnetic Sensing of the Environment), a multidisciplinary approach based on the integration of satellite, aero-photogrammetric and in situ geophysical techniques was applied to investigate an area located in the Montemurro territory in the southeastern sector of the High Agri Valley (Basilicata Region, southern Italy). This paper reports the results obtained by the joint analysis of in situ geophysical surveys, aerial photos interpretation, morphotectonic investigation, geological field survey and borehole data. The joint analysis of different data allowed us (1) to show the shallow geological and structural setting, (2) to detect the geometry of the different lithological units and their mechanical and dynamical properties, (3) to image a previously unmapped fault beneath suspected scarps/warps and (4) to characterize the geometry of an active landslide affecting the study area
    • …
    corecore