34 research outputs found

    GCN2 phosphorylates HIV-1 integrase and decreases HIV-1 replication by limiting viral integration

    Get PDF
    AbstractGCN2 is a serine/threonine kinase involved in cellular stress response related to amino acid starvation. Previously, we showed that GCN2 interacts with HIV-1 integrase and is activated during HIV-1 infection. Herein, we identified HIV-1 integrase as a previously unknown substrate of GCN2 in vitro with a major site of phosphorylation at residue S255 located in the C-terminal domain of HIV-1 integrase. The underlying mechanism was investigated and it appeared that the integrase active site was required in order for GCN2 to target the integrase residue S255. Moreover, various integrases from other retroviruses (e.g. MLV, ASV) were also recognized as a substrate by GCN2. In cells, HIV-1 lentiviral particles harboring mutation at integrase position 255 were affected in their replication. Preventing phosphorylation resulted in an increase in infectivity that correlated with an increase in viral DNA integration. Infectivity of MLV was also higher in cells knocked-out for GCN2 suggesting a conserved mechanism to control viral replication. Altogether, our data suggest that GCN2 may constitute a general guardian of genome stability by regulating foreign DNA integration and as such be part of the antiviral armamentarium of the cell.</jats:p

    Modulation of the functional interfaces between retroviral intasomes and the human nucleosome

    Get PDF
    Retroviral integration into cell chromatin requires the formation of integrase-viral DNA complexes, called intasomes, and their interaction with the target DNA wrapped around nucleosomes. To further study this mechanism we developed an alphaLISA approach using the prototype foamy virus (PFV) intasome and human nucleosome. This system allowed us to monitor the association between both partners and investigate the protein/protein and protein/DNA interactions engaged in the association with chromatin. Using this approach, we next screened the chemical OncoSET library and selected small molecules that could modulate the intasome/nucleosome complex. Molecules were selected as acting either on the DNA topology within the nucleosome or on the integrase/histone tail interactions. Within these compounds, doxorubicin and histone binders calixarenes were characterized using biochemical, structural and cellular approaches. These drugs were shown to inhibit PFV and HIV-1 integration in vitro as well as HIV-1 infection in primary PBMCs cells. Our work provides new information about intasome-nucleosome interaction determinants and paves the way for further unedited antiviral strategies that target the final step of intasome/chromatin anchoring

    In vitro initial attachment of HIV-1 integrase to viral ends: control of the DNA specific interaction by the oligomerization state

    Get PDF
    HIV-1 integrase (IN) oligomerization and DNA recognition are crucial steps for the subsequent events of the integration reaction. Recent advances described the involvement of stable intermediary complexes including dimers and tetramers in the in vitro integration processes, but the initial attachment events and IN positioning on viral ends are not clearly understood. In order to determine the role of the different IN oligomeric complexes in these early steps, we performed in vitro functional analysis comparing IN preparations having different oligomerization properties. We demonstrate that in vitro IN concerted integration activity on a long DNA substrate containing both specific viral and nonspecific DNA sequences is highly dependent on binding of preformed dimers to viral ends. In addition, we show that IN monomers bound to nonspecific DNA can also fold into functionally different oligomeric complexes displaying nonspecific double-strand DNA break activity in contrast to the well known single strand cut catalyzed by associated IN. Our results imply that the efficient formation of the active integration complex highly requires the early correct positioning of monomeric integrase or the direct binding of preformed dimers on the viral ends. Taken together the data indicates that IN oligomerization controls both the enzyme specificity and activity

    Novel therapeutic strategies targeting HIV integrase

    Get PDF
    Integration of the viral genome into host cell chromatin is a pivotal and unique step in the replication cycle of retroviruses, including HIV. Inhibiting HIV replication by specifically blocking the viral integrase enzyme that mediates this step is an obvious and attractive therapeutic strategy. After concerted efforts, the first viable integrase inhibitors were developed in the early 2000s, ultimately leading to the clinical licensure of the first integrase strand transfer inhibitor, raltegravir. Similarly structured compounds and derivative second generation integrase strand transfer inhibitors, such as elvitegravir and dolutegravir, are now in various stages of clinical development. Furthermore, other mechanisms aimed at the inhibition of viral integration are being explored in numerous preclinical studies, which include inhibition of 3' processing and chromatin targeting. The development of new clinically useful compounds will be aided by the characterization of the retroviral intasome crystal structure. This review considers the history of the clinical development of HIV integrase inhibitors, the development of antiviral drug resistance and the need for new antiviral compounds

    Cation binding to 15-TBA quadruplex DNA is a multiple-pathway cation-dependent process

    Get PDF
    A combination of explicit solvent molecular dynamics simulation (30 simulations reaching 4 µs in total), hybrid quantum mechanics/molecular mechanics approach and isothermal titration calorimetry was used to investigate the atomistic picture of ion binding to 15-mer thrombin-binding quadruplex DNA (G-DNA) aptamer. Binding of ions to G-DNA is complex multiple pathway process, which is strongly affected by the type of the cation. The individual ion-binding events are substantially modulated by the connecting loops of the aptamer, which play several roles. They stabilize the molecule during time periods when the bound ions are not present, they modulate the route of the ion into the stem and they also stabilize the internal ions by closing the gates through which the ions enter the quadruplex. Using our extensive simulations, we for the first time observed full spontaneous exchange of internal cation between quadruplex molecule and bulk solvent at atomistic resolution. The simulation suggests that expulsion of the internally bound ion is correlated with initial binding of the incoming ion. The incoming ion then readily replaces the bound ion while minimizing any destabilization of the solute molecule during the exchange

    G-quadruplex structures within the 3' UTR of LINE-1 elements stimulate retrotransposition

    Get PDF
    Long interspersed nuclear elements (LINEs) are ubiquitous transposable elements in higher eukaryotes that have a significant role in shaping genomes, owing to their abundance. Here we report that guanine-rich sequences in the 3' untranslated regions (UTRs) of hominoid-specific LINE-1 elements are coupled with retrotransposon speciation and contribute to retrotransposition through the formation of G-quadruplex (G4) structures. We demonstrate that stabilization of the G4 motif of a human-specific LINE-1 element by small-molecule ligands stimulates retrotransposition.S.B. is a Wellcome Trust Senior Investigator (grant 099232/z/12/z). The Balasubramanian group is supported by European Research Council Advanced Grant 339778, and receives core (C14303/A17197) and program (C9681/A18618) funding from Cancer Research UK
    corecore