36 research outputs found

    Degradation of Internalized αvβ5 Integrin Is Controlled by uPAR Bound uPA: Effect on β1 Integrin Activity and α-SMA Stress Fiber Assembly

    Get PDF
    Myofibroblasts (Mfs) that persist in a healing wound promote extracellular matrix (ECM) accumulation and excessive tissue contraction. Increased levels of integrin αvβ5 promote the Mf phenotype and other fibrotic markers. Previously we reported that maintaining uPA (urokinase plasminogen activator) bound to its cell-surface receptor, uPAR prevented TGFβ-induced Mf differentiation. We now demonstrate that uPA/uPAR controls integrin β5 protein levels and in turn, the Mf phenotype. When cell-surface uPA was increased, integrin β5 levels were reduced (61%). In contrast, when uPA/uPAR was silenced, integrin β5 total and cell-surface levels were increased (2–4 fold). Integrin β5 accumulation resulted from a significant decrease in β5 ubiquitination leading to a decrease in the degradation rate of internalized β5. uPA-silencing also induced α-SMA stress fiber organization in cells that were seeded on collagen, increased cell area (1.7 fold), and increased integrin β1 binding to the collagen matrix, with reduced activation of β1. Elevated cell-surface integrin β5 was necessary for these changes after uPA-silencing since blocking αvβ5 function reversed these effects. Our data support a novel mechanism by which downregulation of uPA/uPAR results in increased integrin αvβ5 cell-surface protein levels that regulate the activity of β1 integrins, promoting characteristics of the persistent Mf

    Decellularized Matrix from Tumorigenic Human Mesenchymal Stem Cells Promotes Neovascularization with Galectin-1 Dependent Endothelial Interaction

    Get PDF
    BACKGROUND: Acquisition of a blood supply is fundamental for extensive tumor growth. We recently described vascular heterogeneity in tumours derived from cell clones of a human mesenchymal stem cell (hMSC) strain (hMSC-TERT20) immortalized by retroviral vector mediated human telomerase (hTERT) gene expression. Histological analysis showed that cells of the most vascularized tumorigenic clone, -BD11 had a pericyte-like alpha smooth muscle actin (ASMA+) and CD146+ positive phenotype. Upon serum withdrawal in culture, -BD11 cells formed cord-like structures mimicking capillary morphogenesis. In contrast, cells of the poorly tumorigenic clone, -BC8 did not stain for ASMA, tumours were less vascularized and serum withdrawal in culture led to cell death. By exploring the heterogeneity in hMSC-TERT20 clones we aimed to understand molecular mechanisms by which mesenchymal stem cells may promote neovascularization. METHODOLOGY/PRINCIPAL FINDINGS: Quantitative qRT-PCR analysis revealed similar mRNA levels for genes encoding the angiogenic cytokines VEGF and Angiopoietin-1 in both clones. However, clone-BD11 produced a denser extracellular matrix that supported stable ex vivo capillary morphogenesis of human endothelial cells and promoted in vivo neovascularization. Proteomic characterization of the -BD11 decellularized matrix identified 50 extracellular angiogenic proteins, including galectin-1. siRNA knock down of galectin-1 expression abrogated the ex vivo interaction between decellularized -BD11 matrix and endothelial cells. More stable shRNA knock down of galectin-1 expression did not prevent -BD11 tumorigenesis, but greatly reduced endothelial migration into -BD11 cell xenografts. CONCLUSIONS: Decellularized hMSC matrix had significant angiogenic potential with at least 50 angiogenic cell surface and extracellular proteins, implicated in attracting endothelial cells, their adhesion and activation to form tubular structures. hMSC -BD11 surface galectin-1 expression was required to bring about matrix-endothelial interactions and for xenografted hMSC -BD11 cells to optimally recruit host vasculature

    Endothelial progenitor cells and integrins: adhesive needs

    Get PDF
    In the last decade there have been multiple studies concerning the contribution of endothelial progenitor cells (EPCs) to new vessel formation in different physiological and pathological settings. The process by which EPCs contribute to new vessel formation in adults is termed postnatal vasculogenesis and occurs via four inter-related steps. They must respond to chemoattractant signals and mobilize from the bone marrow to the peripheral blood; home in on sites of new vessel formation; invade and migrate at the same sites; and differentiate into mature endothelial cells (ECs) and/or regulate pre-existing ECs via paracrine or juxtacrine signals. During these four steps, EPCs interact with different physiological compartments, namely bone marrow, peripheral blood, blood vessels and homing tissues. The success of each step depends on the ability of EPCs to interact, adapt and respond to multiple molecular cues. The present review summarizes the interactions between integrins expressed by EPCs and their ligands: extracellular matrix components and cell surface proteins present at sites of postnatal vasculogenesis. The data summarized here indicate that integrins represent a major molecular determinant of EPC function, with different integrin subunits regulating different steps of EPC biology. Specifically, integrin α4β1 is a key regulator of EPC retention and/or mobilization from the bone marrow, while integrins α5β1, α6β1, αvβ3 and αvβ5 are major determinants of EPC homing, invasion, differentiation and paracrine factor production. β2 integrins are the major regulators of EPC transendothelial migration. The relevance of integrins in EPC biology is also demonstrated by many studies that use extracellular matrix-based scaffolds as a clinical tool to improve the vasculogenic functions of EPCs. We propose that targeted and tissue-specific manipulation of EPC integrin-mediated interactions may be crucial to further improve the usage of this cell population as a relevant clinical agent

    Active vitamin D is cardioprotective in experimental uraemia but not in children with CKD Stages 3-5

    No full text
    PubMed: 332412902-s2.0-85102214554BACKGROUND: Uraemic cardiac remodelling is associated with vitamin D and Klotho deficiency, elevated fibroblast growth factor 23 (FGF23) and activation of the renin-angiotensin system (RAS). The cardioprotective properties of active vitamin D analogues in this setting are unclear. METHODS: In rats with 5/6 nephrectomy (5/6Nx) treated with calcitriol, the cardiac phenotype and local RAS activation were investigated compared with controls. A nested case-control study was performed within the Cardiovascular Comorbidity in Children with Chronic Kidney Disease (4C) study, including children with chronic kidney disease (CKD) Stages 3-5 [estimated glomerular filtration rate (eGFR) 25?mL/min/1.73?m2] treated with and without active vitamin D. Echocardiograms, plasma FGF23 and soluble Klotho (sKlotho) were assessed at baseline and after 9?months. RESULTS: In rats with 5/6Nx, left ventricular (LV) hypertrophy, LV fibrosis and upregulated cardiac RAS were dose-dependently attenuated by calcitriol. Calcitriol further stimulated FGF23 synthesis in bone but not in the heart, and normalized suppressed renal Klotho expression. In the 4C study cohort, treatment over a mean period of 9?months with active vitamin D was associated with increased FGF23 and phosphate and decreased sKlotho and eGFR compared with vitamin D naïve controls, whereas LV mass index did not differ between groups. CONCLUSIONS: Active vitamin D ameliorates cardiac remodelling and normalizes renal Klotho expression in 5/6Nx rats but does not improve the cardiac phenotype in children with CKD Stages 3-5. This discrepancy may be due to further enhancement of circulating FGF23 and faster progression of CKD associated with reduced sKlotho and higher serum phosphate in vitamin D-treated patients. © The Author(s) 2020. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved

    The novel seizure quality index for the antidepressant outcome prediction in electroconvulsive therapy: association with biomarkers in the cerebrospinal fluid

    Get PDF
    For patients with depression treated with electroconvulsive therapy (ECT), the novel seizure quality index (SQI) can predict the risk of non-response (and non-remission)—as early as after the second ECT session—based the extent of several ictal parameters of the seizure. We aim to test several CSF markers on their ability to predict the degree of seizure quality, measured by the SQI to identify possible factors, that could explain some variability of the seizure quality. Baseline CSF levels of metabolites from the kynurenine pathway, markers of neurodegeneration (tau proteins, β-amyloids and neurogranin), elements of the innate immune system, endocannabinoids, sphingolipids, neurotrophic factors (VEGF) and Klotho were measured before ECT in patients with depression (n = 12) to identify possible correlations with the SQI by Pearson's partial correlation. Negative, linear relationships with the SQI for response were observed for CSF levels of T-tau (rpartial = − 0.69, p = 0.019), phosphatidylcholines (rpartial = − 0.52, p = 0.038) and IL-8 (rpartial = − 0.67, p = 0.047). Regarding the SQI for remission, a negative, linear relationship was noted with CSF levels of the endocannabinoid AEA (rpartial = − 0.70, p = 0.024) and CD163 (rpartial = − 0.68, p = 0.029). In sum, CSF Markers for the innate immune system, for neurodegeneration and from lipids were found to be associated with the SQI for response and remission after adjusting for age. Consistently, higher CSF levels of the markers were always associated with lower seizure quality. Based on these results, further research regarding the mechanism of seizure quality in ECT is suggested

    Diagnosis and management of mineral and bone disorders in infants with CKD: clinical practice points from the ESPN CKD-MBD and Dialysis working groups and the Pediatric Renal Nutrition Taskforce

    No full text
    Background: Infants with chronic kidney disease (CKD) form a vulnerable population who are highly prone to mineral and bone disorders (MBD) including biochemical abnormalities, growth retardation, bone deformities, and fractures. We present a position paper on the diagnosis and management of CKD-MBD in infants based on available evidence and the opinion of experts from the European Society for Paediatric Nephrology (ESPN) CKD-MBD and Dialysis working groups and the Pediatric Renal Nutrition Taskforce. Methods: PICO (Patient, Intervention, Comparator, Outcomes) questions were generated, and relevant literature searches performed covering a population of infants below 2 years of age with CKD stages 2–5 or on dialysis. Clinical practice points (CPPs) were developed and leveled using the American Academy of Pediatrics grading matrix. A Delphi consensus approach was followed. Results: We present 34 CPPs for diagnosis and management of CKD-MBD in infants, including dietary control of calcium and phosphate, and medications to prevent and treat CKD-MBD (native and active vitamin D, calcium supplementation, phosphate binders). Conclusion: As there are few high-quality studies in this field, the strength of most statements is weak to moderate, and may need to be adapted to individual patient needs by the treating physician. Research recommendations to study key outcome measures in this unique population are suggested. Graphical Abstract: [Figure not available: see fulltext.]
    corecore