38 research outputs found

    On factors of 4-connected claw-free graphs

    Get PDF
    We consider the existence of several different kinds of factors in 4-connected claw-free graphs. This is motivated by the following two conjectures which are in fact equivalent by a recent result of the third author. Conjecture 1 (Thomassen): Every 4-connected line graph is hamiltonian, i.e., has a connected 2-factor. Conjecture 2 (Matthews and Sumner): Every 4-connected claw-free graph is hamiltonian. We first show that Conjecture 2 is true within the class of hourglass-free graphs, i.e., graphs that do not contain an induced subgraph isomorphic to two triangles meeting in exactly one vertex. Next we show that a weaker form of Conjecture 2 is true, in which the conclusion is replaced by the conclusion that there exists a connected spanning subgraph in which each vertex has degree two or four. Finally we show that Conjectures 1 and 2 are equivalent to seemingly weaker conjectures in which the conclusion is replaced by the conclusion that there exists a spanning subgraph consisting of a bounded number of paths

    On factors of 4-connected claw-free graphs

    Get PDF
    We consider the existence of several different kinds of factors in 4-connected claw-free graphs. This is motivated by the following two conjectures which are in fact equivalent by a recent result of the third author. Conjecture 1 (Thomassen): Every 4-connected line graph is Hamiltonian, i.e. has a connected 2-factor. Conjecture 2 (Matthews and Sumner): Every 4-connected claw-free graph is hamiltonian. We first show that Conjecture 2 is true within the class of hourglass-free graphs, i.e. graphs that do not contain an induced subgraph isomorphic to two triangles meeting in exactly one vertex. Next we show that a weaker form of Conjecture 2 is true, in which the conclusion is replaced by the conclusion that there exists a connected spanning subgraph in which each vertex has degree two or four. Finally we show that Conjecture 1 and 2 are equivalent to seemingly weaker conjectures in which the conclusion is replaced by the conclusion that there exists a spanning subgraph consisting of a bounded number of paths. \u

    Construction of cycle double covers for certain classes of graphs

    Get PDF
    We introduce two classes of graphs, Indonesian graphs and kk-doughnut graphs. Cycle double covers are constructed for these classes. In case of doughnut graphs this is done for the values k=1,2,3k=1,2,3 and 4

    On graphs double-critical with respect to the colouring number

    Get PDF
    The colouring number col(G) of a graph G is the smallest integer k for which there is an ordering of the vertices of G such that when removing the vertices of G in the specified order no vertex of degree more than k-1 in the remaining graph is removed at any step. An edge e of a graph G is said to be &em;double-col-critical if the colouring number of G-V(e) is at most the colouring number of G minus 2. A connected graph G is said to be double-col-critical if each edge of G is double-col-critical. We characterise the double-col-critical graphs with colouring number at most 5. In addition, we prove that every 4-col-critical non-complete graph has at most half of its edges being double-col-critical, and that the extremal graphs are precisely the odd wheels on at least six vertices. We observe that for any integer k greater than 4 and any positive number ε, there is a k-col-critical graph with the ratio of double-col-critical edges between 1- ε and 1

    Distance and the pattern of intra-European trade

    Get PDF
    Given an undirected graph G = (V, E) and subset of terminals T ⊆ V, the element-connectivity κ ′ G (u, v) of two terminals u, v ∈ T is the maximum number of u-v paths that are pairwise disjoint in both edges and non-terminals V \ T (the paths need not be disjoint in terminals). Element-connectivity is more general than edge-connectivity and less general than vertex-connectivity. Hind and Oellermann [21] gave a graph reduction step that preserves the global element-connectivity of the graph. We show that this step also preserves local connectivity, that is, all the pairwise element-connectivities of the terminals. We give two applications of this reduction step to connectivity and network design problems. • Given a graph G and disjoint terminal sets T1, T2,..., Tm, we seek a maximum number of elementdisjoint Steiner forests where each forest connects each Ti. We prove that if each Ti is k element k connected then there exist Ω( log hlog m) element-disjoint Steiner forests, where h = | i Ti|. If G is planar (or more generally, has fixed genus), we show that there exist Ω(k) Steiner forests. Our proofs are constructive, giving poly-time algorithms to find these forests; these are the first non-trivial algorithms for packing element-disjoint Steiner Forests. • We give a very short and intuitive proof of a spider-decomposition theorem of Chuzhoy and Khanna [12] in the context of the single-sink k-vertex-connectivity problem; this yields a simple and alternative analysis of an O(k log n) approximation. Our results highlight the effectiveness of the element-connectivity reduction step; we believe it will find more applications in the future

    All 4-connected line graphs of claw free graphs are Hamiltonian connected

    No full text

    On factors of 4-connected claw-free graphs

    Get PDF
    We consider the existence of several different kinds of factors in 4-connected claw-free graphs. This is motivated by the following two conjectures which are in fact equivalent by a recent result of the third author. Conjecture 1 (Thomassen): Every 4-connected line graph is Hamiltonian, i.e. has a connected 2-factor. Conjecture 2 (Matthews and Sumner): Every 4-connected claw-free graph is hamiltonian. We first show that Conjecture 2 is true within the class of hourglass-free graphs, i.e. graphs that do not contain an induced subgraph isomorphic to two triangles meeting in exactly one vertex. Next we show that a weaker form of Conjecture 2 is true, in which the conclusion is replaced by the conclusion that there exists a connected spanning subgraph in which each vertex has degree two or four. Finally we show that Conjecture 1 and 2 are equivalent to seemingly weaker conjectures in which the conclusion is replaced by the conclusion that there exists a spanning subgraph consisting of a bounded number of paths

    A degree sum condition for the existence of a contractible edge in a k-connected graph

    No full text

    Rooted Minors and Locally Spanning Subgraphs

    Full text link
    Results on the existence of various types of spanning subgraphs of graphs are milestones in structural graph theory and have been diversified in several directions. In the present paper, we consider "local" versions of such statements. In 1966, for instance, D. W. Barnette proved that a 33-connected planar graph contains a spanning tree of maximum degree at most 33. A local translation of this statement is that if GG is a planar graph, XX is a subset of specified vertices of GG such that XX cannot be separated in GG by removing 22 or fewer vertices of GG, then GG has a tree of maximum degree at most 33 containing all vertices of XX. Our results constitute a general machinery for strengthening statements about kk-connected graphs (for 1≤k≤41 \leq k \leq 4) to locally spanning versions, i.e. subgraphs containing a set X⊆V(G)X\subseteq V(G) of a (not necessarily planar) graph GG in which only XX has high connectedness. Given a graph GG and X⊆V(G)X\subseteq V(G), we say MM is a minor of GG rooted at XX, if MM is a minor of GG such that each bag of MM contains at most one vertex of XX and XX is a subset of the union of all bags. We show that GG has a highly connected minor rooted at XX if X⊆V(G)X\subseteq V(G) cannot be separated in GG by removing a few vertices of GG. Combining these investigations and the theory of Tutte paths in the planar case yield to locally spanning versions of six well-known results about degree-bounded trees, hamiltonian paths and cycles, and 22-connected subgraphs of graphs
    corecore