952 research outputs found

    Searching for the Least Invasive Management of Pelvi-Ureteric Junction Obstruction in Children: A Critical Literature Review of Comparative Outcomes

    Get PDF
    Introduction: To review the published evidence on the minimally invasive pyeloplasty techniques available currently with particular emphasis on the comparative data about the various minimally invasive alternatives to treat pelvi-ureteric junction obstruction and gauge if one should be favored under certain circumstances. Materials and Methods: Non-systematic review of literature on open and minimally invasive pyeloplasty including various kinds of laparoscopic procedures, the robotic-assisted laparoscopic pyeloplasty, and endourological procedures. Results: Any particular minimally invasive pyeloplasty procedure seems feasible in experienced hands, irrespective of age including infants. Comparative data suggest that the robotic-assisted procedure has gained wider acceptance mainly because it is ergonomically more suited to surgeon well-being and facilitates advanced skills with dexterity thanks to 7 degrees of freedom. However, costs remain the major drawback of robotic surgery. In young children and infants, instead, open surgery can be performed via a relatively small incision and quicker time frame. Conclusions: The best approach for pyeloplasty is still a matter of debate. The robotic approach has gained increasing acceptance over the last years with major advantages of the surgeon well-being and ergonomics and the ease of suturing. Evidence, however, may favor the use of open surgery in infancy

    Electron spin relaxation in semiconducting carbon nanotubes: the role of hyperfine interaction

    Full text link
    A theory of electron spin relaxation in semiconducting carbon nanotubes is developed based on the hyperfine interaction with disordered nuclei spins I=1/2 of 13^{13}C isotopes. It is shown that strong radial confinement of electrons enhances the electron-nuclear overlap and subsequently electron spin relaxation (via the hyperfine interaction) in the carbon nanotubes. The analysis also reveals an unusual temperature dependence of longitudinal (spin-flip) and transversal (dephasing) relaxation times: the relaxation becomes weaker with the increasing temperature as a consequence of the particularities in the electron density of states inherent in one-dimensional structures. Numerical estimations indicate relatively high efficiency of this relaxation mechanism compared to the similar processes in bulk diamond. However, the anticipated spin relaxation time of the order of 1 s in CNTs is still much longer than those found in conventional semiconductor structures.Comment: 11 pages, 2 figure

    An Overview and Assessment of the Editorial Assistant Position at \u3ci\u3eWomen’s Studies Quarterly\u3c/i\u3e

    Full text link
    This paper represents the culmination of my internship at Women’s Studies Quarterly, and documents my experience of working from September 2020, to June 2021. I will begin with a discussion of the journal’s historical importance; from its origin in 1972, to its more contemporary issues. This background will segue into a critical analysis of my role at the journal, supported by anecdotes and ideas of critical feminist theorists

    Entanglement in the interaction between two quantum oscillator systems

    Full text link
    The fundamental quantum dynamics of two interacting oscillator systems are studied in two different scenarios. In one case, both oscillators are assumed to be linear, whereas in the second case, one oscillator is linear and the other is a non-linear, angular-momentum oscillator; the second case is, of course, more complex in terms of energy transfer and dynamics. These two scenarios have been the subject of much interest over the years, especially in developing an understanding of modern concepts in quantum optics and quantum electronics. In this work, however, these two scenarios are utilized to consider and discuss the salient features of quantum behaviors resulting from the interactive nature of the two oscillators, i.e., coherence, entanglement, spontaneous emission, etc., and to apply a measure of entanglement in analyzing the nature of the interacting systems. ... For the coupled linear and angular-momentum oscillator system in the fully quantum-mechanical description, we consider special examples of two, three, four-level angular momentum systems, demonstrating the explicit appearances of entanglement. We also show that this entanglement persists even as the coupled angular momentum oscillator is taken to the limit of a large number of levels, a limit which would go over to the classical picture for an uncoupled angular momentum oscillator

    Laparoscopic Left Adrenalectomy with Submesocolic and Retropancreatic Approach

    Get PDF
    Introduction: The safety and efficacy of laparoscopic transperitoneal lateral adrenalectomy and retroperitoneoscopic adrenalectomy have been reported. The aim is to report the authors’ experience in laparoscopic left adrenalectomy with an alternative transperitoneal submesocolic and retropancreatic approach with patient supine

    Is there any clinical relevant difference between non mosaic Klinefelter Syndrome patients with or without Androgen Receptor variations?

    Get PDF
    Klinefelter Syndrome (KS) is the most common chromosomal disorder in men leading to non-obstructive azoospermia. Spermatozoa can be found by TESE in about 50% of adults with KS despite severe testicular degeneration. We evaluated AR variations and polymorphism length in 135 non-mosaic KS patients, aimed to find possible correlation with clinical features, sex hormones and sperm retrieval. Among 135 KS patients we found AR variations in eight subjects (5.9%). All variations but one caused a single amino acid substitution. Four variations P392S, Q58L, L548F, A475V found in six patients had been previously described to be associated with different degrees of androgen insensitivity. Moreover we observed in two patients Y359F and D732D novel variations representing respectively a missense variation and a synonymous variation not leading to amino acid substitution. All the Klinefelter patients with AR gene variations were azoospermic. Spermatozoa were retrieved with TESE for two men (40%), sperm retrieval was unsuccessful in other 3 patients. This is the only study reporting AR variations in KS patients. Relevant clinical differences not emerged between AR mutated and not AR mutated KS patients, but does each variation play an important role in the trasmission to the offspring obtained by ART in this patients

    Drift-diffusion model for spin-polarized transport in a non-degenerate 2DEG controlled by a spin-orbit interaction

    Full text link
    We apply the Wigner function formalism to derive drift-diffusion transport equations for spin-polarized electrons in a III-V semiconductor single quantum well. Electron spin dynamics is controlled by the linear in momentum spin-orbit interaction. In a studied transport regime an electron momentum scattering rate is appreciably faster than spin dynamics. A set of transport equations is defined in terms of a particle density, spin density, and respective fluxes. The developed model allows studying of coherent dynamics of a non-equilibrium spin polarization. As an example, we consider a stationary transport regime for a heterostructure grown along the (0, 0, 1) crystallographic direction. Due to the interplay of the Rashba and Dresselhaus spin-orbit terms spin dynamics strongly depends on a transport direction. The model is consistent with results of pulse-probe measurement of spin coherence in strained semiconductor layers. It can be useful for studying properties of spin-polarized transport and modeling of spintronic devices operating in the diffusive transport regime.Comment: 16 pages, 3 figure

    Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads

    Get PDF
    Motivation: There is a strong demand in the genomic community to develop effective algorithms to reliably identify genomic variants. Indel detection using next-gen data is difficult and identification of long structural variations is extremely challenging
    • 

    corecore