17 research outputs found

    Improved dust acoustic solitary waves in two temperature dust fluids

    Get PDF
    A theoretical investigation is carried out for contribution of the higher-order nonlinearity to nonlinear dust-acoustic solitary waves (DASWs) in an unmagnetized two types of dust fluids (one cold and the other is hot) in the presence of Bolltzmannian ions and electrons. A KdV equation that contains the lowest-order nonlinearity and dispersion is derived from the lowest order of perturbation and a linear inhomogeneous (KdV-type) equation that accounts for the higher-order nonlinearity and dispersion is obtained. A stationary solution for equations resulting from higher-order perturbation theory has been found using the renormalization method. The effects of hot and cold dust charge grains are found to significantly change the higher-order properties (viz. the amplitude and width) of the DASWs

    A Statistical Similarity/Dissimilarity Analysis of Protein Sequences Based on a Novel Group Representative Vector

    No full text
    Similarity/dissimilarity analysis is a key way of understanding the biology of an organism by knowing the origin of the new genes/sequences. Sequence data are grouped in terms of biological relationships. The number of sequences related to any group is susceptible to be increased every day. All the present alignment-free methods approve the utility of their approaches by producing a similarity/dissimilarity matrix. Although this matrix is clear, it measures the degree of similarity among sequences individually. In our work, a representative of each of three groups of protein sequences is introduced. A similarity/dissimilarity vector is evaluated instead of the ordinary similarity/dissimilarity matrix based on the group representative. The approach is applied on three selected groups of protein sequences: beta globin, NADH dehydrogenase subunit 5 (ND5), and spike protein sequences. A cross-grouping comparison is produced to ensure the singularity of each group. A qualitative comparison between our approach, previous articles, and the phylogenetic tree of these protein sequences proved the utility of our approach

    A Unified Context for Spherulitic Growth in Polymers

    No full text
    corecore