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Abstract 
 
A theoretical investigation is carried out for contribution of the higher-order nonlinearity to 
nonlinear dust-acoustic solitary waves (DASWs) in an unmagnetized two types of dust fluids 
(one cold and the other is hot) in the presence of Bolltzmannian ions and electrons. A KdV 
equation that contains the lowest-order nonlinearity and dispersion is derived from the lowest 
order of perturbation and a linear inhomogeneous (KdV-type) equation that accounts for the 
higher-order nonlinearity and dispersion is obtained. A stationary solution for equations resulting 
from higher-order perturbation theory has been found using the renormalization method. The 
effects of hot and cold dust charge grains are found to significantly change the higher-order 
properties (viz. the amplitude and width) of the DASWs. 
 
Keywords:   Dust-acoustic waves; Hot and cold dust charge; KdV-type equation; Higher order 

nonlinearity 
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1.  Introduction 
 
The study of the dynamics of dust contaminated plasmas (mixtures of ordinary plasma particles 
and charged dust grains) has recently received considerable interest due to their occurrence in 
real charged particle systems, e.g., in interstellar clouds, in interplanetary space, in cometary 
tails, in ring systems of giant planets (like Saturn F- ring's), in mesospheric noctilucent clouds, as 
well as in many Earth bound plasma, see for instance Verheest (2000), Shukla and Mamun 
(2002). Dusty plasma applications range from astrophysics to strongly coupled dusty plasmas 
and dusty plasma crystals to technology plasma etching and deposition Mendis and Rosenberg 
(1994), Horonyi (1996), Verheest (1996), Shukla and Mamun (2003).   
 
In dusty plasma, the dust grains may be charged negatively by plasma electron and ion currents 
or positively by secondary electron emission, UV radiation, or thermionic emission, etc Hornayi 
(1996), Whipple (1981). From theoretical perspective, Chow et al. (1993) have shown that due to 
the size effect on secondary emission insulating dust grains with different sizes in space plasmas 
can have the opposite polarity (smaller ones being positive and larger ones being negative). 
Therefore, it is so important and interesting to deal with the dust plasma systems if in addition to 
the electrons and ions, there are two types of dust particles with different masses, charges and 
temperatures. Consquently, there will be two basic dust-acoustic modes propagating with two 
different velocities El-Wakil et al. (2006a), Mowafy et al. (2008).  
 
The dust-acoustic modes have also been investigated in the presence of hot dust in unmagnetized 
plasmas Roychoudhury and Mukherjee (1997), Mahmood and Saleem (2003). In most of the 
previous investigations of DAW, the dust has been assumed to be cold or hot. Recently, Akhtar 
et al. (2007), derived the Sagdeevs pseudopotential for dust acoustic waves (DAWs) in an 
unmagnetized two types of dust fluids (one cold and the other is hot) in the presence of 
Bolltzmannian ions and electrons, and studied the existence of rarefactive solitons. Investigations 
of small-amplitude (DAWs) in dusty plasma usually describe the evolution of the wave by the 
Korteweg--de Vries (KdV) equation. In fact, this equation contains the lowest-order nonlinearity 
and dispersion, and consequently can only describe a wave restricted to small amplitude. In other 
words, (the first-order solution would underestimate the amplitude of the solitary wave by as 
much as 20%.). As the wave amplitude increases, the width and velocity of a soliton deviate 
from the prediction of the KdV equation, i.e., the KdV approximation does not apply anymore. 
Therefore, in order to overcome this deviation, higher-order nonlinear and dispersive effects 
have to be taken into account El-Labany (1995), El-Wakil et al. (2004a), El-Taibany and 
Moslem (2005), El-Shewy (2005), El-Shewy et al. (2008), El-Wakil et al. (2006b), El-Wakil et 
al. (2004b), Attia et al. (2010).  
 
In the present work, our main concern is to examine the effect of both higher-order depressive 
and nonlinear corrections on the amplitude and width of (DA) solitary waves propagated in an 
unmagnetized two types of dust fluids (one cold and the other is hot) in the presence of 
Bolltzmannian ions and electrons. Also, we aim to study the effect of hot and cold dust charge 
grains on the formations of both the improved rarefactive and compressive solitons. This paper is 
organized as follows; in Section 2, we present the basic set of fluid equations governing our 
plasma model which reduced to the well-known KdV equation by employing the reductive 
perturbation theory. In Section 3, a linear inhomogeneous (KdV-type) equation is obtained. In 

2

Applications and Applied Mathematics: An International Journal (AAM), Vol. 5 [2010], Iss. 1, Art. 3

https://digitalcommons.pvamu.edu/aam/vol5/iss1/3



28                                                                                                                               El-Shewy et al.  
 

Section 4, higher-order solution is obtained by using the renormalization method. Finally, 
discussions and conclusions are given in Sections 5 and 6, respectively. 

 
 2.  Basic equations and KdV equation 
 
We consider homogeneous unmagnetized plasma having electrons, singly charged ions, hot and 
cold dust species. The electrons and ions are assumed to follow the Boltzmann distribution with  

,e i dT T T , where  ande iT T  are the temperatures of the electrons and ions, respectively, and  

dT  is the temperature of hot dust. The hot dust is assumed to be heated adiabatically. The one-

dimensional continuity and momentum equations for cold dust, respectively, are, 
 

( ) 0,c
c c

n
n u

t x

 
 

 
                                                                                                           (1.a)  

                                

( ) 0.c c
c c

c

u Z
u u

t x m x

  
  

  


                                                                                             (1.b) 

 
Corresponding equations for hot dust particles are: 
 

( ) 0,h
h h

n
n u

t x

 
 

 
                                                                                                          (2.a)  

 
1

( ) 0.h h h
h h

h h h

u Z P
u u

t x m x m n x

  
  

   
                                                                          (2.b) 

 
For adiabatic hot dust, we have 
 

0
0

( ) ,h
h h

h

n
P P

N
                                                                                                                     (2.c) 

 
where  ( 2) /N N    , and N is the number of degrees of freedom. The present work, 

1N  , 3    and  0 0 .h h hP N T  The Boltzmann distributed electrons and ions follow the 

density equations, respectively, as 
 

0 exp( / )e e en n e T                                                                                                            (3.a) 

 
and 
 

0 exp( / )i i in n e T   .                                                                                                      (3.b) 

 
The Poisson equation can be written as 
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2

2
4 ( ).e i c c h he n n Z n Z n

x


   



                                                                                     (4) 

 
In equilibrium, we have, 
 

0 0 0 0.i e c c h hn n Z N Z N                                                                                                      (5) 

 
In the earlier equations,  is the electrostatic potential, hZ  and cZ are the charge numbers for 

negatively charged hot and cold dust, respectively.  ( )c hu u is the cold (hot) dusty plasma 

velocity.  0 0 0 0, , , , , , ,andh c e i h c e in n n n N N n n  are the perturbed and equilibrium number densities of 

the species, respectively. 
 
According to the general method of reductive perturbation theory for small amplitude, we 
introduce the slow stretched co-ordinates Kodama and Taniuti (1978): 
 

3 1
2 2,    ( )t x t       ,                                                                                                       (6) 

 
where     is a small dimensionless expansion parameter measuring the strength of nonlinearity 
and  is the wave speed. All physical quantities appearing in (1) and (2) are expanded as power 

series in    about their equilibrium values as: 
 

 

2 3
0 1 2 3

2 3
1 2 3

2 3
0 1 2 3

2 3
1 2 3

2 3
1 2 3

...,

...,

...,

...,

....

c c c c c

c c c c

h h h h h

h h h h

n N n n n

u u u u

n N n n n

u u u u

  

  

  

  

     

    

   

    

   

   

                                                                                   (7)    

 
We impose the boundary conditions that as 0 0, , , 0, 0.c c h h c hn N n N u u         

 
Substituting (6) and (7) into (1-4), and equating coefficients of like powers of   . Then, from the 
lowest-order equations in    , the following results are obtained: 
 

0
1 1 1 12

2
0

1 12
0 0

0
1 12

0 0

, ,

,
3

.
3

c c c
c c

c c

h h
h

h h

h h
h

h h

eN Z eZ
n u

m m

eN Z
n

m N p

e N Z
u

m N p

 
 




 


   

 


 


                                                                                      (8) 

 
Poisson's equation gives the linear dispersion relation 
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2 2 2

0 0 0 0
2 2

0 0

0.
3

c c h h e i

c h h

N Z N Z n n

m m N p Te Ti 
   


                                                                             (9) 

 
Proceeding to order of 2 and by eliminating the second order perturbed quantities  

nc2 , nh2 , uc2 , uh2   and  2  , we obtain the desired KdV equation for the first-order perturbed 

potential: 
 

3
1 1 1

1 3
0,

2

B
A

  
  

  
  

  
                                                                                       (10) 

 
where 

 
 

 

 

3 2 3 3 2 2 33 3 0 0 0 0 00
4 2 3 2 22

0 0

2 2 3 2 2
0 0

2 32
0 0

12 412

3

8 8

3

2( )
 ,

( )

h h h h e ic c

c h h

h h h c c

ch h

N m N p Z e Ti N Te n eN Z e

m Te Tim N p

e m Z N e N Z

mm N p

A

  
 

 


 





  


    

and 

 
2 2 3 2 2

0 0
2 32

0 0

8 8

3

2
.

h h h c c

ch h

e m Z N e N Z

mm N p

B
 

 


  

 
 
3.  Linear inhomogeneous KdV-type equation 
 

In this section we start by writing down the second-order perturbed quantities  nc2  ,  uc2 , nh2  

and uh2   in terms of  1   and  2   as: 
 

 
2

2 2 20 1
2 1 1 24 2 2

2
2 2 21

2 1 1 23 2 2

2 4 3 2 ,
2 2

2 2 ,
2 2

c c
c c c c c

c

c
c c c c c

c

N Z e B
n m A m Z e m

m

Z e B
u m A m Z e m

m

     
 

     
 

 
     

 
     

              

5

El-Shewy et al.: Improved dust acoustic solitary waves in two temperature dust fluids

Published by Digital Commons @PVAMU, 2010



AAM: Intern. J., Vol. 5, Issue 1 (June 2010) [Previously, Vol. 5, No. 1]                                                                    31 
 

 
 

0
2 6 3 2 4 2 2 3

2
2 2 3 2 2 3 2 21

1 1 12

2
2 4 2 2 21

2 2 2 12

2 ( 9 27 27 )

( 3 2 4 6
2

12 2 12 18 3 ),
2

h h
h

h h h h h h

h h h h h h

h h h h h h h h

Z e N
n

m T m T m T

B
Z em m A m m T A

B
m T m m T T T Z e

  

      


      



   


   




    



                                   

2 6 3 2 4 2 2 3

2
2 2 2 2 2 31

2 1 1 22

2
2 5 3 2 2 4 2 2 4 1

2 1 1 2

2( 9 27 27 )

(18 18 9 9 12
2

2 2 ).
2

h
h

h h h h h h

h h h h h h h

h h h h h

eZ
u

m T m T m T

B
T T T A T Z e T m

B
m Z e m m A m

  

     


      



   


   




   



                            (11)                          

 
If we now go to the higher order in  , we obtain the following equations    
 

0 1
2 1 2 2 2 0 3 32

0
1 22

( )

0,

c c c c
c c c c c c c

c c c

c c
c

c

Z e Z e N Z e
n n n u N u n

m m m

N Z e
u

m

 
       


 

   
    

    


 



            (12.a) 

 

31
2 2 1 2 3 0,c c c

c c c c
c c c

Z e Z e Z e
u u u u

m m m

  
      

  
    

    
                                    (12.b) 

 

0 1
2 1 2 2 22 2 2

0
0 3 1 2 32

( )
3 3 3

0,
3

h h h h
h h h h

h h h h h h

h h
h h h h

h h

Z e Z e Z e N
n n n u

T m T m T m

Z e N
n u u n

T m

  
     

 
   

 
  

     

  
   

   

                    (12.c) 

 

 

3
2 1 2 3 32

0

1 1
2 1 2 222

0

3
3

3 ( ) 0,
33

h h h
h h h h

h h h h h

h h h
h h h

h hh h h h

Z e T Z e
u u u n

T m N m m

T Z e Z e
n n u

T mN m T m

  
     

 
   

   
   

     

 
   

   

                    (12.d) 

 
2 22

0 02
3 3 3 32

4 4 4 4 0e i
h h c c

e i

e n e n
eZ n eZ n

T T

     



    


.                                   (12.e) 

   
 
Eliminating 3 3 3 3, , ,c c h hn u n u  and 3 from (12), and with the aid of both (8) and (10), a linear 
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inhomogeneous equation for the second-order perturbed potential  2   can be obtained 

 
 3

2 1 2 2
1 2 13

( )
( ) ( ) 0,

2

B
L A S

     
  

  
    
  

                                                              (13) 

 
where 
 

3 2 3 5
1 1 1 1

1 1 2 1 3 1 42 3 5
( ) ( ) ( ) ,S A A A A

     
    

   
   

    
                                                   (14) 

 

where the coefficients Ai   (where 1,2,..., 4i  ) are listed as:  
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c h h c c c
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  
      

324 2 3 2 4 2 2 1
4 0 0 0 0

3 35 2 2 3 2 2 4 2 2
0 0 0 0 0 0 0 0
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3 3 3 .

c h h h c h h c

c h h c h h h h h c h h c

A e m m N Z N m N p Z

m m N p m m N m N p Z N m N p Z

  

    

  

   
 

 
In summary, we have reduced the basic set of fluid (1-4) to a nonlinear KdV equation (10) for 1  

and a linear inhomogeneous differential equation (13) for 2 ; for which the source term is 

described by a known function  1  .  

 
 
4.  Stationary Solution 
 
To obtain a stationary solution from (10) and (13), we adopt the renormalization method 
introduced by Kodama and Taniuti (1978), and El- Labany (1995) to eliminate the secular behavior 
up to the second-order potential. According to this method, (10) can be added to (13) to yield 
 

� 
1 1

2 2

( ) ( ) ,n n
n n

n n

K L S    
 

                                                                                           (15) 

 

where 2S  represents the right-hand side of (13). Adding  1
nn

n

  

    to both sides of (15), 

where 2 3
1 2 3 ...           , with coefficients to be determined later, n  are determined 

successively to cancel out the resonant term in nS . Then, (10) and (13) may be written as 

 



  

3
1 1 1 1

1 3

1
0,

2
A B

    
   

   
    

   
                                                                           (16) 

 
 

 



3

2 2 2 1
1 2 12 13

1
( ) ( ) .

2
A B S

      
    

    
     

    
                                             (17) 

 
The parameter  in (15) and (16) can be determined from the conditions that the resonant terms 

in 


12 ( )S   may be cancelled out by the terms


1( / )      in (16) see for instance El-Labany 

(1995). 
 
Let us introduce the variable, 
 

( ) ,                                                                                                                      (18) 
 

where the parameter   is related to the Mach number  / dM C    by  

 
1 ,M M       
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with M  being the soliton velocity and dC  is the dust-acoustic velocity. 

 
Integrating equations (16) and (17) with respect to the new variable    and using the appropriate 

vanishing boundary conditions for  


1( )    and  


2 ( )    and their derivatives up to second order 

as   , one gets  

 
 2

11
1 12

( 2 ) 0 ,
d

B A
d

  


                                                                                                (19) 

 

 


  


2

1 12 1
1 2 12 12

2 ( ) 2 [ ( ) ] .
d d

B A B S d
d d

    
 

 


                                                   (20) 

 
The one-soliton solution of (19) admits 
 


2

1 1 sech  ( ),m D                                                                                                             (21) 

 
where the soliton amplitude 1m  and the soliton width 1D   are given 

 

1
1

3 2
, .m

B
D

A
 

 


                                                                                                   (22) 

 
Substituting (21) in (19), then the source term of (19) becomes 
 




1 1 4 21
12 1 1 4 1

2 2
4 61 1

1 22 2

2 [ ( ) ] 2 ( 16 ) sech  ( )

2
sech  ( ) sech  ( ),

m

m m

d
B S d B D A D

d

D D
B B

    


    

 


    

 



                   (23) 

 
with  
 

1 2 3 4

2 1 2 3 4

10
2 ,

2 20
6 2 .

A
A A A

B
B A

A A A A
A B





  

   
 

 

In order to cancel out the resonant terms in  


1( )S   , the value of   should be 
 

4
1 416 .D A                                                                                                                         (24) 

 
and for (23), we introduce the independent variable 
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tanh( ),D                                                                                                                      (25) 

                    
to recast (23) into 
 

 


2
2 2 2 22

2 3 42

2
1 3(3 1) (1 ) (1 ) ,

1

d d

d d

   
   

              
                            (26) 

 
where 

 
2
1

3 1

2
1

4 2

4
,

2
.

m

m

B

B

 

 




 

 
Note that the two independent solutions of homogeneous part of (26) can be represented in terms 
associated Legendre function of first and second kind,  
 

2 2
3 15 (1 ),P                                                                                                                  (27) 

 

2 2 2 1 2 2
3

15 1
(1 ) ln 2(1 ) 15(1 ) 5,

2 1
Q            

                                             (28) 

 
the complementary solution of (26) admits the following form 
 


2 2 2 1 2

2 1 2

15 1
(15 (1 )) ( (1 ) ln 2(1 ) 15(1 ) 5).

2 1c C C              
          (29)   

 
By applying the method of variation of parameters, the particular solution of (26) takes the form 
 

 


2 2
2 1 3 2 3( ) ( ) ( ) ( ),p L P L Q                                                                                         (30) 

 
where  1( )L    and  2 ( )L    given by  

 
2
3

1 2 2 2
3 3

( ) ( )
( ) ,

(1 ) ( ( ), ( ))

Q T
L d

W P Q

 
   

    

 
2

3
2 2 2 2

3 3

( ) ( )
( ) ,

(1 ) ( ( ), ( ))

P T
L d

W P Q
 

 
    

 
with  

10

Applications and Applied Mathematics: An International Journal (AAM), Vol. 5 [2010], Iss. 1, Art. 3

https://digitalcommons.pvamu.edu/aam/vol5/iss1/3



36                                                                                                                               El-Shewy et al.  
 

 
2 2 2

3 4( ) (1 ) (1 ) ,T        

 
2 2

2 2 2 23 3
3 3 3 3 2

120
( , ) .

1

dQ dP
W P Q P Q

d d
  

  
 

 
Using  2

3P   and  2
3Q   , then 1( )L   and 2 ( )L   reduced to  

 
2 3 2 3 5 7

1 3 4 5 6 7

1 1 1 1 1
( ) (1 ) ( (1 )) ln( ) ( ) ( ) ( ) ,

32 3 4 1 64
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

 

2 3 2
2 3 4

1 1 1
( ) (1 ) ( (1 ) ).

16 3 4
L         
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5 3 4
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1 1 1 1
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48 15 64 15
1 33 1
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  

     

    
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The particular solution is given by 
 

 2 2
2 21

2 8 2(1 )[ (1 )],m
p

D     


                                                                              (31) 

 
where  

 

1
8 2 3 4

6 10 4 20
.

3 3 3

BA A
A A A

A B
      

 
In (23) the first term is the secular one, which can be eliminated by renormalization the 

amplitude. Also the boundary conditions  


2 0    as      produce 2 0.C    Thus, only the 

particular solution contributes to 


2 . 
 
Expressing (31) in terms of the old variable   the solution of (26) is given by 
 

 2 2
2 21

2 10 2sech  ( )  tanh  ( ) .m
p

D
D D

       
                                                             (32) 

 
The stationary soliton solution for DA waves is given by 
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where  

1
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,
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and the soliton width is given by  
 

1
21 4
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A MB
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Figure 1. The comparison between the 
lowest order potential  ( )   and higher-

order correction ˆ( )  of the compressive 
soliton with respect to   for, 
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010 , 6,h c i cm m m N   0 05, 10h eN n   

0, 10010in  , 1i eT T eV  , 1000cZ  , 
 1000hZ   and 0.4  . 
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Figure 2.  The comparison between the 
lowest order potential ( )  and higher-order 

correction ˆ( )  of the rarefactive soliton 

with respect to   for 0 06, 11,c hN N   

0 010, 10010e in n  , 1410h c im m m  , 

1i eT T eV  , 1000cZ  ,  1000hZ  , and 

0.4  . 
 

 
5.  Numerical Results and Discussion 
  
Nonlinear DAWs in a homogeneous unmagnetized plasma having electrons, singly charged ions, 
hot and cold dust grains have been investigated. We have assumed that the effect of gravity in 
the system is neglected ( 1dr  ) as well as there are no neutrals. Saturn F-ring's are one of the 

space plasma observations that satisfy our conditions: (i) there are no neutrals, (ii) the ratio 
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between the inter-grain distances between dust particles to plasma Debye radius is less than one, 
(iii) coupling parameter   is less than one, and (iv) dr  is smaller than 1 m . Hence, numerical 

studies have been made using plasma parameters close to those values corresponding to Saturn 
F-ring's i.e., the equilibrium electron and dust densities are  3 3

0 010 , 10e hn cm N cm     and 

dust charge and mass are taken as  2 310 10hZ    ,  1210h c im m m   , respectively, as given 

in Refs. Akhtar et al. (2007), Shukla and Mendis (1997), Farid et al. (2001). Generally speaking, 
the present system supports compressive and rarefactive soliton i.e. the amplitude of KdV 
solitons can be positive ( 0A  ) or negative ( 0A  ). Since our objectives was to study the effect 
of higher-order nonlinearity on the formation of solitary waves, we specifically elucidated to 
what extent the higher-order solution modifies the soliton amplitude. The comparison between 
the lowest order potential ( )  and higher-order correction ˆ( )  of the compressive 
(rarefactive) solitons were depicted in Figures (1, 2).  
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Figure 3.  The variation of the amplitude 

0c of the compressive soliton for higher-

order correction with   
hZ  for different values 

of  0hN  for 0 0 06, 10, 10010,c e iN n n    
1410h c im m m  , 1 ,i eT T eV   

1000cZ   and 0.4  . 
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Figure 4. The variation of the amplitude 0c  

of the compressive soliton for higher-order 
correction with  cZ  for different values of 

0cN  for 0 0 04, 10, 10010,h e iN n n    
1410 ,h c im m m   1 ,i eT T eV   1000hZ   

and 0.4  . 
 

 
It is found that, the higher-order correction increasing the soliton amplitude for compressive and 
rarefactive solitons. On the other hand, it is important to study effects of the dusty plasma density  

 ( )h cn n  and the charge numbers for negatively charged hot and cold dusty grains on the 

existence of improved solitary waves. It is obvious from Figures (3, 4) that compressive soliton 
amplitude increases with enhancing of 0 ,h hN Z  and decreases with 0 ,cN  

cZ .  Finally, the 

rarefactive soliton amplitude increases with 0 ,c cN Z  and decreases with   
0 ,h hN Z  as shown in 

Figures 5 and 6. 
 
These results show that the presence of cold (hot) dusty plasma density  ( )c hn n  and the charge 

numbers for negatively charged cold (hot) dust ( )c hZ Z  as well as the higher-order correction 

modify significantly the properties of dust-acoustic solitary waves. The results presented here 
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should be useful in understanding salient features of localized electrostatic perturbations in space 
and laboratory plasmas. 
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Figure 5.  The variation of the amplitude 0r  

of the rarefactive soliton for higher-order 
correction with   

hZ  for different values of 

0hN for 0 0 06, 10, 10010c e iN n n   ,  
1410h c im m m  , 1i eT T eV  ,  

1000cZ   and 0.4  . 
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Figure 6.  The variation of the amplitude 0r  

of the rarefactive soliton for higher-order 
correction with  cZ  for different values of  

0cN  for  0 0 010, 10, 10010h e iN n n   ,  
1410h c im m m  , 1i eT T eV  , 

1000hZ   and  0.4  . 
 

 
6.  Conclusions 
 
In this work, we have investigated the properties of nonlinear DAWs in a unmagnetized plasma 
having electrons, singly charged ions, hot and cold dust grains. The reductive perturbation 
method has been used to reduce the basic set of fluid equations to the well-known KdV equation; 
however, as the wave amplitude increases, the width and velocity of a soliton deviate from the 
prediction of the KdV equation. In particular, we study the next-order of perturbation theory, a 
linear inhomogeneous (KdV-type) equation that accounts for the higher-order nonlinearity and 
dispersion is obtained. A stationary solution for equations resulting from higher-order 
perturbation theory has been found using the renormalization method. The consideration of 
higher-order approximation was found to increase the amplitude of DAWs solitons. In other 
word, we have shown that the presence of cold (hot) dusty plasma density  ( )c hn n  and the 

charge numbers for negatively charged cold (hot) dust  ( )c hZ Z   do not only modify the basic 

properties of the improved dust acoustic solitary potential structures, but also causes two 
different potential profiles, namely compressive and rarefactive pulses. 

We inject to that the analytical model demonstrated here can provide a useful basis for the 
interpretation of recent observations of solitary wave in dusty plasma environments. For 
example, the results presented may be applicable to dusty plasma existing in Saturn F-ring's 
region. 
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