500 research outputs found
Trip-Based Public Transit Routing
We study the problem of computing all Pareto-optimal journeys in a public
transit network regarding the two criteria of arrival time and number of
transfers taken. We take a novel approach, focusing on trips and transfers
between them, allowing fine-grained modeling. Our experiments on the
metropolitan network of London show that the algorithm computes full 24-hour
profiles in 70 ms after a preprocessing phase of 30 s, allowing fast queries in
dynamic scenarios.Comment: Minor corrections, no substantial changes. To be presented at ESA
201
Distance Oracles for Time-Dependent Networks
We present the first approximate distance oracle for sparse directed networks
with time-dependent arc-travel-times determined by continuous, piecewise
linear, positive functions possessing the FIFO property.
Our approach precomputes approximate distance summaries from
selected landmark vertices to all other vertices in the network. Our oracle
uses subquadratic space and time preprocessing, and provides two sublinear-time
query algorithms that deliver constant and approximate
shortest-travel-times, respectively, for arbitrary origin-destination pairs in
the network, for any constant . Our oracle is based only on
the sparsity of the network, along with two quite natural assumptions about
travel-time functions which allow the smooth transition towards asymmetric and
time-dependent distance metrics.Comment: A preliminary version appeared as Technical Report ECOMPASS-TR-025 of
EU funded research project eCOMPASS (http://www.ecompass-project.eu/). An
extended abstract also appeared in the 41st International Colloquium on
Automata, Languages, and Programming (ICALP 2014, track-A
Molecular dynamics of ion transport through the open conformation of a bacterial voltage-gated sodium channel
The crystal structure of the open conformation of a bacterial voltage-gated sodium channel pore from Magnetococcus sp. (NaVMs) has provided the basis for a molecular dynamics study defining the channel’s full ion translocation pathway and conductance process, selectivity, electrophysiological characteristics, and ion-binding sites. Microsecond molecular dynamics simulations permitted a complete time-course characterization of the protein in a membrane system, capturing the plethora of conductance events and revealing a complex mixture of single and multi-ion phenomena with decoupled rapid bidirectional water transport. The simulations suggest specific localization sites for the sodium ions, which correspond with experimentally determined electron density found in the selectivity filter of the crystal structure. These studies have also allowed us to identify the ion conductance mechanism and its relation to water movement for the NavMs channel pore and to make realistic predictions of its conductance properties. The calculated single-channel conductance and selectivity ratio correspond closely with the electrophysiology measurements of the NavMs channel expressed in HEK 293 cells. The ion translocation process seen in this voltage-gated sodium channel is clearly different from that exhibited by members of the closely related family of voltage-gated potassium channels and also differs considerably from existing proposals for the conductance process in sodium channels. These studies simulate sodium channel conductance based on an experimentally determined structure of a sodium channel pore that has a completely open transmembrane pathway and activation gate
Size reduction of complex networks preserving modularity
The ubiquity of modular structure in real-world complex networks is being the
focus of attention in many trials to understand the interplay between network
topology and functionality. The best approaches to the identification of
modular structure are based on the optimization of a quality function known as
modularity. However this optimization is a hard task provided that the
computational complexity of the problem is in the NP-hard class. Here we
propose an exact method for reducing the size of weighted (directed and
undirected) complex networks while maintaining invariant its modularity. This
size reduction allows the heuristic algorithms that optimize modularity for a
better exploration of the modularity landscape. We compare the modularity
obtained in several real complex-networks by using the Extremal Optimization
algorithm, before and after the size reduction, showing the improvement
obtained. We speculate that the proposed analytical size reduction could be
extended to an exact coarse graining of the network in the scope of real-space
renormalization.Comment: 14 pages, 2 figure
Tractable Pathfinding for the Stochastic On-Time Arrival Problem
We present a new and more efficient technique for computing the route that
maximizes the probability of on-time arrival in stochastic networks, also known
as the path-based stochastic on-time arrival (SOTA) problem. Our primary
contribution is a pathfinding algorithm that uses the solution to the
policy-based SOTA problem---which is of pseudo-polynomial-time complexity in
the time budget of the journey---as a search heuristic for the optimal path. In
particular, we show that this heuristic can be exceptionally efficient in
practice, effectively making it possible to solve the path-based SOTA problem
as quickly as the policy-based SOTA problem. Our secondary contribution is the
extension of policy-based preprocessing to path-based preprocessing for the
SOTA problem. In the process, we also introduce Arc-Potentials, a more
efficient generalization of Stochastic Arc-Flags that can be used for both
policy- and path-based SOTA. After developing the pathfinding and preprocessing
algorithms, we evaluate their performance on two different real-world networks.
To the best of our knowledge, these techniques provide the most efficient
computation strategy for the path-based SOTA problem for general probability
distributions, both with and without preprocessing.Comment: Submission accepted by the International Symposium on Experimental
Algorithms 2016 and published by Springer in the Lecture Notes in Computer
Science series on June 1, 2016. Includes typographical corrections and
modifications to pre-processing made after the initial submission to SODA'15
(July 7, 2014
Changes in trabecular bone, hematopoiesis and bone marrow vessels in aplastic anemia, primary osteoporosis, and old age
Retrospective histologic analyses of bone biopsies and of post mortem samples from normal persons of different age groups, and of bone biopsies of age- and sex-matched groups of patients with primary osteoporosis and aplastic anemia show characteristic age dependent as well as pathologic changes including atrophy of osseous trabeculae and of hematopoiesis, and changes in the sinusoidal and arterial capillary compartments. These results indicate the possible role of a microvascular defect in the pathogenesis of osteoporosis and aplastic anemia
Enhance the Efficiency of Heuristic Algorithm for Maximizing Modularity Q
Modularity Q is an important function for identifying community structure in
complex networks. In this paper, we prove that the modularity maximization
problem is equivalent to a nonconvex quadratic programming problem. This result
provide us a simple way to improve the efficiency of heuristic algorithms for
maximizing modularity Q. Many numerical results demonstrate that it is very
effective.Comment: 9 pages, 3 figure
Recent Advances in Graph Partitioning
We survey recent trends in practical algorithms for balanced graph
partitioning together with applications and future research directions
Algorithm Engineering in Robust Optimization
Robust optimization is a young and emerging field of research having received
a considerable increase of interest over the last decade. In this paper, we
argue that the the algorithm engineering methodology fits very well to the
field of robust optimization and yields a rewarding new perspective on both the
current state of research and open research directions.
To this end we go through the algorithm engineering cycle of design and
analysis of concepts, development and implementation of algorithms, and
theoretical and experimental evaluation. We show that many ideas of algorithm
engineering have already been applied in publications on robust optimization.
Most work on robust optimization is devoted to analysis of the concepts and the
development of algorithms, some papers deal with the evaluation of a particular
concept in case studies, and work on comparison of concepts just starts. What
is still a drawback in many papers on robustness is the missing link to include
the results of the experiments again in the design
- …
