384 research outputs found

    Equilibrum Composition of Thermal Plasma with Copper and Chromium Vapours Admixtures

    Get PDF
    Thermal plasma of electric arc is widely used in various technological applications: welding, cutting, lamps, spraying, protection of electrical installations, etc. Process efficiency is defined by different parameters that determine arc operation and influence the energy transfer within the medium. All energy exchanges depend on the medium, which is modified by the presence of the arc and more particularly by the appearance of new species from contact erosion. Sintered Cu-Cr composites are widely used as electrical contacts for vacuum circuit breakers. These materials take advantage of the high thermal and electrical conductivity of Cu and of the refractory and oxygen getter properties of reinforcing Cr particles. The aim of this paper is to give results of the calculation of the equilibrium composition of argon and air plasma with various admixtures of Cu and Cr

    Optimization of 3-band Mean Absorption Coefficients

    Get PDF
    In this paper we present a process for mean absorption coefficient optimal band selection applied to the 3-band model of radiation in an air electrical arc. For fixed temperature, the divergence of radiation flux in an infinite cylindrical plasma column is calculated using spectrally resolved absorption coefficient and serves as a reference value. Optimization process is used to properly select the bands of 3-band mean absorption approximation using both unmodified and limited Planck mean absorption coefficient. The ac-curacy of aforementioned two approximation methods is evaluated

    Plasma cell free next-generation sequencing detects an unusual pneumonia pathogen in an immunocompetent adolescent with acute respiratory distress syndrome

    Get PDF
    This case details a rapid diagnosis of legionella pneumonia causing severe acute respiratory distress syndrome (ARDS) in an otherwise healthy adolescent through plasma microbial cell-free DNA next generation sequencing (mcfDNA-NGS). Diagnosis by mcfDNA-NGS of this unexpected pathogen led to narrowing of antimicrobials and the addition of glucocorticoids as adjunctive therapy for ARDS

    Quantum Holographic Encoding in a Two-dimensional Electron Gas

    Full text link
    The advent of bottom-up atomic manipulation heralded a new horizon for attainable information density, as it allowed a bit of information to be represented by a single atom. The discrete spacing between atoms in condensed matter has thus set a rigid limit on the maximum possible information density. While modern technologies are still far from this scale, all theoretical downscaling of devices terminates at this spatial limit. Here, however, we break this barrier with electronic quantum encoding scaled to subatomic densities. We use atomic manipulation to first construct open nanostructures--"molecular holograms"--which in turn concentrate information into a medium free of lattice constraints: the quantum states of a two-dimensional degenerate Fermi gas of electrons. The information embedded in the holograms is transcoded at even smaller length scales into an atomically uniform area of a copper surface, where it is densely projected into both two spatial degrees of freedom and a third holographic dimension mapped to energy. In analogy to optical volume holography, this requires precise amplitude and phase engineering of electron wavefunctions to assemble pages of information volumetrically. This data is read out by mapping the energy-resolved electron density of states with a scanning tunnelling microscope. As the projection and readout are both extremely near-field, and because we use native quantum states rather than an external beam, we are not limited by lensing or collimation and can create electronically projected objects with features as small as ~0.3 nm. These techniques reach unprecedented densities exceeding 20 bits/nm2 and place tens of bits into a single fermionic state.Comment: Published online 25 January 2009 in Nature Nanotechnology; 12 page manuscript (including 4 figures) + 2 page supplement (including 1 figure); supplementary movie available at http://mota.stanford.ed

    Biophysical and electrochemical studies of protein-nucleic acid interactions

    Get PDF
    This review is devoted to biophysical and electrochemical methods used for studying protein-nucleic acid (NA) interactions. The importance of NA structure and protein-NA recognition for essential cellular processes, such as replication or transcription, is discussed to provide background for description of a range of biophysical chemistry methods that are applied to study a wide scope of protein-DNA and protein-RNA complexes. These techniques employ different detection principles with specific advantages and limitations and are often combined as mutually complementary approaches to provide a complete description of the interactions. Electrochemical methods have proven to be of great utility in such studies because they provide sensitive measurements and can be combined with other approaches that facilitate the protein-NA interactions. Recent applications of electrochemical methods in studies of protein-NA interactions are discussed in detail

    Peer Support For Self-Management Of Diabetes Improved Outcomes In International Settings

    Get PDF
    Self-management of diabetes is essential to reducing the risks of associated disabilities. But effective self-management is often short-lived. Peers can provide the kind of ongoing support that is needed for sustained self-management of diabetes. In this context, peers are nonprofessionals who have diabetes or close familiarity with its management. Key functions of effective peer support include assistance in daily management, social and emotional support, linkage to clinical care, and ongoing availability of support. Using these four functions as a template of peer support, project teams in Cameroon, South Africa, Thailand, and Uganda developed and then evaluated peer support interventions for adults with diabetes. Our initial assessment found improvements in symptom management, diet, blood pressure, body mass index, and blood sugar levels for many of those taking part in the programs. For policy makers, the broader message is that by emphasizing the four key peer support functions, diabetes management programs can be successfully introduced across varied cultural settings and within diverse health systems

    Tricholithobezoar Causing Gastric Perforation

    Get PDF
    A bezoar is an intraluminal mass formed by the accumulation of undigested material in the gastrointestinal tract. Trichobezoar is a rare condition seen almost exclusively in young women with trichotillomania and trichotillophagia. When not recognized, the trichobezoar continues to grow, which increases the risk of severe complications such as gastric ulceration and even perforation. Formation of a gallstone within the trichobezoar (tricholithobezoar) is an event that has not yet been described. We report the case of a 22-year-old woman admitted to the emergency room with signals and symptoms of an epigastric mass and perforative acute abdomen. Radiological study revealed bilateral pneumoperitoneum. Personal history revealed depressive syndrome, trichotillomania and trichophagia. With a diagnosis of visceral perforation, an urgent exploratory laparotomy was performed. This confirmed the diagnosis of gastric perforation due to a large trichobezoar with the formation of a gastrolith that was removed by anterior gastrotomy. Biochemical study of the gastric stone revealed that it was composed of bile salts. There were no complications. The patient was discharged on the 5th postoperative day and was referred for psychiatric treatment
    corecore