393 research outputs found
Limits on Non-Linear Electrodynamics
In this paper we set a framework in which experiments whose goal is to test
QED predictions can be used in a more general way to test non-linear
electrodynamics (NLED) which contains low-energy QED as a special case. We
review some of these experiments and we establish limits on the different free
parameters by generalizing QED predictions in the framework of NLED. We finally
discuss the implications of these limits on bound systems and isolated charged
particles for which QED has been widely and successfully tested
Characterization of the Vacuum Birefringence Polarimeter at BMV: Dynamical Cavity Mirror Birefringence
We present the current status and outlook of the optical characterization of
the polarimeter at the Bir\'{e}fringence Magn\'etique du Vide (BMV) experiment.
BMV is a polarimetric search for the QED predicted anisotropy of vacuum in the
presence of external electromagnetic fields. The main challenge faced in this
fundamental test is the measurement of polarization ellipticity on the order of
induced in linearly polarized laser field per pass through a
magnetic field having an amplitude and length
. This challenge is addressed by
understanding the noise sources in precision cavity-enhanced polarimetry. In
this paper we discuss the first investigation of dynamical birefringence in the
signal-enhancing cavity as a result of cavity mirror motion.Comment: To appear in the 2019 CPEM special issue of IEEE Transactions on
Instrumentation and Measuremen
Noise characterization for resonantly-enhanced polarimetric vacuum magnetic-birefringence experiments
In this work we present data characterizing the sensitivity of the
Bir\'{e}fringence Magnetique du Vide (BMV) instrument. BMV is an experiment
attempting to measure vacuum magnetic birefringence (VMB) via the measurement
of an ellipticity induced in a linearly polarized laser field propagating
through a birefringent region of vacuum in the presence of an external magnetic
field. Correlated measurements of laser noise alongside the measurement in the
main detection channel allow us to separate measured sensing noise from the
inherent birefringence noise of the apparatus. To this end we model different
sources of sensing noise for cavity-enhanced polarimetry experiments, such as
BMV. Our goal is to determine the main sources of noise, clarifying the
limiting factors of such an apparatus. We find our noise models are compatible
with the measured sensitivity of BMV. In this context we compare the phase
sensitivity of separate-arm interferometers to that of a polarimetry apparatus
for the discussion of current and future VMB measurements
Vacuum magnetic linear birefringence using pulsed fields: the BMV experiment
We present the current status of the BMV experiment. Our apparatus is based
on an up-to-date resonant optical cavity coupled to a transverse magnetic
field. We detail our data acquisition and analysis procedure which takes into
account the symmetry properties of the raw data with respect to the orientation
of the magnetic field and the sign of the cavity birefringence. The measurement
result of the vacuum magnetic linear birefringence k_\mathrm{CM}8 \times 10^{-21}^{-2}3\sigma$ confidence level
Inverse Cotton-Mouton effect of the Vacuum and of atomic systems
In this letter we calculate the Inverse Cotton-Mouton Effect (ICME) for the
vacuum following the predictions of Quantum ElectroDynamics. We compare the
value of this effect for the vacuum with the one expected for atomic systems.
We finally show that ICME could be measured for the first time for noble gases
using state-of-the-art laser systems and for the quantum vacuum with
near-future laser facilities like ELI and HiPER, providing in particular a test
of the nonlinear behaviour of quantum vacuum at intensities below the Schwinger
limit of 4.5x10^33 W/m^2.Comment: Submitted to EP
No light shining through a wall : new results from a photoregeneration experiment
Recently, axion-like particle search has received renewed interest. In
particular, several groups have started ``light shining through a wall''
experiments based on magnetic field and laser both continuous, which is very
demanding in terms of detector background. We present here the 2 limits
obtained so far with our novel set-up consisting of a pulsed magnetic field and
a pulsed laser. In particular, we have found that the axion-like particle two
photons inverse coupling constant is GeV provided that the
particle mass 1 meV. Our results definitively invalidate
the axion interpretation of the original PVLAS optical measurements with a
confidence level greater than 99.9%.Comment: Version that will appear in Physical Review Letters, Vol. 99, n. 18,
(2 Nov 2007
Circular and linear magnetic birefringences in xenon at nm
The circular and linear magnetic birefringences corresponding to the Faraday
and the Cotton-Mouton effects, respectively, have been measured in xenon at
nm. The experimental setup is based on time dependent magnetic
fields and a high finesse Fabry-Perot cavity. Our value of the Faraday effect
is the first measurement at this wavelength. It is compared to theoretical
predictions. Our uncertainty of a few percent yields an agreement at better
than 1 with the computational estimate when relativistic effects are
taken into account. Concerning the Cotton-Mouton effect, our measurement, the
second ever published at nm, agrees at better than
with theoretical predictions. We also compare our error budget with those
established for other experimental published values
Observation of the Inverse Cotton-Mouton Effect
We report the observation of the Inverse Cotton-Mouton Effect (ICME) i.e. a
magnetization induced in a medium by non resonant linearly polarized light
propagating in the presence of a transverse magnetic field. We present a
detailed study of the ICME in a TGG crystal showing the dependence of the
measured effect on the light intensity, the optical polarization, and on the
external magnetic field. We derive a relation between the Cotton-Mouton and
Inverse Cotton-Mouton effects that is roughly in agreement with existing
experimental data. Our results open the way to applications of the ICME in
optical devices
The BMV project: Search for photon oscillations into massive particles
In this contribution to PSAS08 we report on the research activities developed
in our Toulouse group, in the framework of the BMV project, concerning the
search for photon oscillations into massive particles, such as axion-like
particles in the presence of a strong transverse magnetic field. We recall our
main result obtained in collaboration with LULI at \'Ecole Polytechnique
(Palaiseau, France). We also present the very preliminary results obtained with
the BMV experiment which is set up at LNCMP (Toulouse, France).Comment: Proceedings of PSAS'08, to be published in Can. J. Phy
A comparison between matter wave and light wave interferometers for the detection of gravitational waves
We calculate and compare the response of light wave interferometers and
matter wave interferometers to gravitational waves. We find that metric matter
wave interferometers will not challenge kilometric light wave interferometers
such as Virgo or LIGO, but could be a good candidate for the detection of very
low frequency gravitational waves
- âŠ