4 research outputs found

    Binocular summation revisited: beyond √2

    Get PDF
    Our ability to detect faint images is better with two eyes than with one, but how great is this improvement? A meta-analysis of 65 studies published across more than five decades shows definitively that psychophysical binocular summation (the ratio of binocular to monocular contrast sensitivity) is significantly greater than the canonical value of √2. Several methodological factors were also found to affect summation estimates. Binocular summation was significantly affected by both the spatial and temporal frequency of the stimulus, and stimulus speed (the ratio of temporal to spatial frequency) systematically predicts summation levels, with slow speeds (high spatial and low temporal frequencies) producing the strongest summation. We furthermore show that empirical summation estimates are affected by the ratio of monocular sensitivities, which varies across individuals, and is abnormal in visual disorders such as amblyopia. A simple modeling framework is presented to interpret the results of summation experiments. In combination with the empirical results, this model suggests that there is no single value for binocular summation, but instead that summation ratios depend on methodological factors that influence the strength of a nonlinearity occurring early in the visual pathway, before binocular combination of signals. Best practice methodological guidelines are proposed for obtaining accurate estimates of neural summation in future studies, including those involving patient groups with impaired binocular vision

    Nonlinear transduction of emotional facial expression

    Get PDF
    To create neural representations of external stimuli, the brain performs a number of processing steps that transform its inputs. For fundamental attributes, such as stimulus contrast, this involves one or more nonlinearities that are believed to optimise the neural code to represent features of the natural environment. Here we ask if the same is also true of more complex stimulus dimensions, such as emotional facial expression. We report the results of three experiments combining morphed facial stimuli with electrophysiological and psychophysical methods to measure the function mapping emotional expression intensity to internal response. The results converge on a nonlinearity that accelerates over weak expressions, and then becomes compressive for stronger expressions, similar to the situation for lower level stimulus properties. We further demonstrate that the nonlinearity is not attributable to the morphing procedure used in stimulus generation

    Neural markers of suppression in impaired binocular vision

    Get PDF
    Even after conventional patching treatment, individuals with a history of amblyopia typically lack good stereo vision. This is often attributed to atypical suppression between the eyes, yet the specific mechanism is still unclear. Guided by computational models of binocular vision, we tested explicit predictions about how neural responses to contrast might differ in individuals with impaired binocular vision. Participants with a history of amblyopia (N = 25), and control participants with typical visual development (N = 19) took part in the study. Neural responses to different combinations of contrast in the left and right eyes, were measured using both electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). Stimuli were sinusoidal gratings with a spatial frequency of 3c/deg, flickering at 4 Hz. In the fMRI experiment, we also ran population receptive field and retinotopic mapping sequences, and a phase-encoded localiser stimulus, to identify voxels in primary visual cortex (V1) sensitive to the main stimulus. Neural responses in both modalities increased monotonically with stimulus contrast. When measured with EEG, responses were attenuated in the weaker eye, consistent with a fixed tonic suppression of that eye. When measured with fMRI, a low contrast stimulus in the weaker eye substantially reduced the response to a high contrast stimulus in the stronger eye. This effect was stronger than when the stimulus-eye pairings were reversed, consistent with unbalanced dynamic suppression between the eyes. Measuring neural responses using different methods leads to different conclusions about visual differences in individuals with impaired binocular vision. Both of the atypical suppression effects may relate to binocular perceptual deficits, e.g. in stereopsis, and we anticipate that these measures could be informative for monitoring the progress of treatments aimed at recovering binocular vision
    corecore