3,219 research outputs found
Individual Expectations and Aggregate Behavior in Learning to Forcast Experiments
Models with heterogeneous interacting agents explain macro phenomena through interactions at the micro level. We propose genetic algorithms as a model for individual expectations to explain aggregate market phenomena. The model explains all stylized facts observed in aggregate price fluctuations and individual forecasting behaviour in recent learning to forecast laboratory experiments with human subjects (Hommes et al. 2007), simultaneously and across different treatments.
Complete Photoionization Experiments via Ultrafast Coherent Control with Polarization Multiplexing II: Numerics & Analysis Methodologies
The feasibility of complete photoionization experiments, in which the full
set of photoionization matrix elements are determined, using multiphoton
ionization schemes with polarization-shaped pulses has recently been
demonstrated [Hockett et. al., Phys. Rev. Lett. 112, 223001 (2014)]. Here we
extend on our previous work to discuss further details of the numerics and
analysis methodology utilised, and compare the results directly to new
tomographic photoelectron measurements, which provide a more sensitive test of
the validity of the results. In so doing we discuss in detail the physics of
the photoionziation process, and suggest various avenues and prospects for this
coherent multiplexing methodology
Maximum information photoelectron metrology
Photoelectron interferograms, manifested in photoelectron angular
distributions (PADs), are a high-information, coherent observable. In order to
obtain the maximum information from angle-resolved photoionization experiments
it is desirable to record the full, 3D, photoelectron momentum distribution.
Here we apply tomographic reconstruction techniques to obtain such 3D
distributions from multiphoton ionization of potassium atoms, and fully analyse
the energy and angular content of the 3D data. The PADs obtained as a function
of energy indicate good agreement with previous 2D data and detailed analysis
[Hockett et. al., Phys. Rev. Lett. 112, 223001 (2014)] over the main spectral
features, but also indicate unexpected symmetry-breaking in certain regions of
momentum space, thus revealing additional continuum interferences which cannot
otherwise be observed. These observations reflect the presence of additional
ionization pathways and, most generally, illustrate the power of maximum
information measurements of this coherent observable
The Power-law Tail Exponent of Income Distributions
In this paper we tackle the problem of estimating the power-law tail exponent
of income distributions by using the Hill's estimator. A subsample
semi-parametric bootstrap procedure minimising the mean squared error is used
to choose the power-law cutoff value optimally. This technique is applied to
personal income data for Australia and Italy.Comment: Latex2e v1.6; 8 pages with 3 figures; in press (Physica A
Recommended from our members
Catalase-Containing Silica Particles as Ultrasound-Based Hydrogen Peroxide Sensors to Determine Infected From Noninfected Fluid Collections in Humans.
OBJECTIVE. Hydrogen peroxide (H2O2) plays a key role in neutrophil oxidative defense against infection. Catalase-containing silica nanoshells are nanoparticles that generate O2 microbubbles imaged with ultrasound in the presence of elevated H2O2. We aimed to determine whether ultrasound-detectable O2 microbubbles produced by catalase-containing silica nanoshells can determine whether fluid collections drained from patients are infected. SUBJECTS AND METHODS. During this HIPAA-compliant, institutional review board-approved study, 52 human fluid samples were collected from clinically required image-guided percutaneous drainage procedures. Catalase-containing silica nanoshells were added to the fluid samples during imaging in real time using a Sequoia-512 15L8-S linear transducer (Siemens Healthcare). Production of detectable microbubbles was graded subjectively as negative (noninfected) or positive (infected) with low, moderate, or high confidence by a single observer blinded to all clinical data. The truth standard was microbiology laboratory culture results. Performance characteristics including ROC curves were calculated. RESULTS. Microbubble detection to distinguish infected from noninfected fluids was 84% sensitive and 72% specific and offered negative and positive predictive values of 89% and 64%, respectively. The AUC was 0.79. Six of nine false-positive samples were peritoneal fluid collections that were all collected from patients with decompensated cirrhosis. CONCLUSION. The presence of elevated H2O2 indicated by microbubble formation in the presence of catalase-containing silica nanoshells is sensitive in distinguishing infected from noninfected fluids and offers a relatively high negative predictive value. False-positive cases may result from noninfectious oxidative stress. Catalase-containing silica nanoshells may constitute a novel point-of-care test performed at time of percutaneous drainage, potentially obviating placement of drains into otherwise sterile collections and minimizing risk of secondary infection or other complication
- …