1,855 research outputs found
Cholesterol, Bile Acid, And Lipoprotein Metabolism In Two Strains Of Hamster, One Resistant, The Other Sensitive (LPN) To Sucrose-Induced Cholelithiasis
A comprehensive study of cholesterol, bile acid, and lipoprotein metabolism was undertaken in two strains of hamster that differed markedly in their response to a sucrose-rich/low fat diet. Under basal conditions, hamsters from the LPN strain differed from Janvier hamsters by a lower cholesterolemia, a higher postprandial insulinemia, a more active cholesterogenesis in both liver [3- to 4-fold higher 3-hydroxy 3-methylglutaryl coenzyme A reductase (HMG-CoAR) activity and mRNA] and small intestine, and a lower hepatic acyl-coenzyme A:cholesterol acyltransferase activity. Cholesterol saturation indices in the gallbladder bile were similar for both strains, but the lipid concentration was 2-fold higher in LPN than in Janvier hamsters. LPN hamsters had a lower capacity to transform cholesterol into bile acids, shown by the smaller fraction of endogenous cholesterol converted into bile acids prior to fecal excretion (0.34 vs. 0.77). In LPN hamsters, the activities of cholesterol 7 -hydroxylase (C7OHase) and sterol 27-hydroxylase (S27OHase), the two rate-limiting enzymes of bile acid synthesis, were disproportionably lower (by 2-fold) to that of HMG-CoAR. When fed a sucrose-rich diet, plasma lipids increased, dietary cholesterol absorption improved, hepatic activities of HMG-CoA reductase, C7Ohase, and S27OHase were reduced, and intestinal S27OHase was inhibited in both strains. Despite a similar increase in the biliary hydrophobicity index due to the bile acid enrichment in chenodeoxycholic acid and derivatives, only LPN hamsters had an increased lithogenic index and developed cholesterol gallstones (75% incidence), whereas Janvier hamsters formed pigment gallstones (79% incidence). These studies indicate that LPN hamsters have a genetic predisposition to sucrose-induced cholesterol gallstone formation related to differences in cholesterol and bile acid metabolism
Significant variability exists in preoperative planning software measures of glenoid morphology for shoulder arthroplasty
Background & Hypothesis: We sought to assess the reliability of 4 different shoulder arthroplasty 3-dimensional preoperative planning programs. Comparison was also made to manual measurements conducted by 2 fellowship-trained musculoskeletal radiologists. We hypothesized that there would be significant variation in measurements of glenoid anatomy affected by glenoid deformity.
Methods: A retrospective review of computed tomography (CT) scans of patients undergoing shoulder arthroplasty was undertaken. A total of 76 computed tomographies were analyzed for glenoid version and inclination by 4 templating software systems (VIP, Blueprint, TrueSight, ExactechGPS). Inter-rater reliability was assessed via intra-class correlation coefficient (ICC). For those shoulders with glenohumeral arthritis (58/76), ICC was also calculated when sub-grouping by modified Walch classification. Lin\u27s concordance correlation coefficient was calculated for each system with 2 musculoskeletal-trained radiologists’ measurements.
Results: Measurements of glenoid version and inclination differed between at least 2 programs by 5Âş-10Âş in 75% and 92% of glenoids respectively, and by \u3e10Âş in 18% and 45% respectively. ICC was excellent for version but only moderate for inclination. ICC was highest among Walch A glenoids for both version (near excellent) and inclination (good), and lowest among Walch D for version (near poor) and Walch B for inclination (moderate). When measuring version, VIP had the highest concordance with manual measurement; Blueprint had the lowest. For inclination Blueprint had the highest concordance; ExactechGPS had the lowest.
Discussion & Conclusion: Despite overall high reliability for measures of glenoid version between 4 frequently utilized shoulder arthroplasty templating softwares, this reliability is significantly affected by glenoid deformity. The programs were overall less reliable when measuring inclination, and a similar trend of decreasing reliability with increasing glenoid deformity emerged that was not statistically significant. Concordance with manual measurement is also variable. Further research is needed to understand how this variability should be accounted for during shoulder arthroplasty preoperative planning.
Level of Evidence: Level III; Retrospective Comparative Stud
Antilithiasic Effect Of Beta-Cyclodextrin In LPN Hamster: Comparison With Cholestyramine
Beta-Cyclodextrin (BCD), a cyclic oligosaccharide that binds cholesterol and bile acids in vitro, has been previously shown to be an effective plasma cholesterol lowering agent in hamsters and domestic pigs. This study examined the effects of BCD as compared with cholestyramine on cholesterol and bile acid metabolism in the LPN hamster model model for cholesterol gallstones. The incidence of cholesterol gallstones was 65% in LPN hamsters fed the lithogenic diet, but decreased linearly with increasing amounts of BCD in the diet to be nil at a dose of 10% BCD. In gallbladder bile, cholesterol, phospholipid and chenodeoxycholate concentrations, hydrophobic and lithogenic indices were all significantly decreased by 10% BCD. Increases in bile acid synthesis (+110%), sterol 27-hydroxylase activity (+106%), and biliary cholate secretion (+140%) were also observed, whereas the biliary secretion of chenodeoxycholate decreased (-43%). The fecal output of chenodeoxycholate and cholate (plus derivatives) was increased by +147 and +64%, respectively, suggesting that BCD reduced the chenodeoxycholate intestinal absorption preferentially. Dietary cholestyramine decreased biliary bile acid concentration and secretion, but dramatically increased the fecal excretion of chenodeoxycholate and cholate plus their derivatives (+328 and +1940%, respectively). In contrast to BCD, the resin increased the lithogenic index in bile, induced black gallstones in 34% of hamsters, and stimulated markedly the activities of HMG-CoA reductase (+670%), sterol 27-hydroxylase (+310%), and cholesterol 7 alpha-hydroxylase (+390%). Thus, beta-cyclodextrin (BCD) prevented cholesterol gallstone formation by decreasing specifically the reabsorption of chenodeoxycholate, stimulating its biosynthesis and favoring its fecal elimination. BCD had a milder effect on lipid metabolism than cholestyramine and does not predispose animals to black gallstones as cholestyramine does in this animal model
Formation and closure of macropinocytic cups in Dictyostelium
Macropinocytosis is a conserved endocytic process by which cells engulf droplets of medium into micron-sized vesicles. We use light-sheet microscopy to define an underlying set of principles by which macropinocytic cups are shaped and closed in Dictyostelium amoebae. Cups form around domains of PIP3 stretching almost to their lip and are supported by a specialized F-actin scaffold from lip to base. They are shaped by a ring of actin polymerization created by recruiting Scar/WAVE and Arp2/3 around PIP3 domains, but how cups evolve over time to close and form a vesicle is unknown. Custom 3D analysis shows that PIP3 domains expand from small origins, capturing new membrane into the cup, and crucially, that cups close when domain expansion stalls. We show that cups can close in two ways: either at the lip, by inwardly directed actin polymerization, or the base, by stretching and delamination of the membrane. This provides the basis for a conceptual mechanism whereby closure is brought about by a combination of stalled cup expansion, continued actin polymerization at the lip, and membrane tension. We test this through the use of a biophysical model, which can recapitulate both forms of cup closure and explain how 3D cup structures evolve over time to mediate engulfment
In gas laser ionization and spectroscopy experiments at the Superconducting Separator Spectrometer (S3): Conceptual studies and preliminary design
International audienceThe results of preparatory experiments and the preliminary designs of a new in-gas laser ionization and spectroscopy setup, to be coupled to the Super Separator Spectrometer S3 of SPIRAL2-GANIL, are reported. Special attention is given to the development and tests to carry out a full implementation of the in-gas jet laser spectroscopy technique. Application of this novel technique to radioactive species will allow highsensitivity and enhanced-resolution laser spectroscopy studies of ground- and excited-state properties of exotic nuclei
Community annotation and bioinformatics workforce development in concert—Little Skate Genome Annotation Workshops and Jamborees
Recent advances in high-throughput DNA sequencing technologies have equipped biologists with a powerful new set of tools for advancing research goals. The resulting flood of sequence data has made it critically important to train the next generation of scientists to handle the inherent bioinformatic challenges. The North East Bioinformatics Collaborative (NEBC) is undertaking the genome sequencing and annotation of the little skate (Leucoraja erinacea) to promote advancement of bioinformatics infrastructure in our region, with an emphasis on practical education to create a critical mass of informatically savvy life scientists. In support of the Little Skate Genome Project, the NEBC members have developed several annotation workshops and jamborees to provide training in genome sequencing, annotation and analysis. Acting as a nexus for both curation activities and dissemination of project data, a project web portal, SkateBase (http://skatebase.org) has been developed. As a case study to illustrate effective coupling of community annotation with workforce development, we report the results of the Mitochondrial Genome Annotation Jamborees organized to annotate the first completely assembled element of the Little Skate Genome Project, as a culminating experience for participants from our three prior annotation workshops. We are applying the physical/virtual infrastructure and lessons learned from these activities to enhance and streamline the genome annotation workflow, as we look toward our continuing efforts for larger-scale functional and structural community annotation of the L. erinacea genome
Reproductive Strategy of the Giant Electric Ray in the Southern Gulf of California
The objective of the present study was to describe and characterize macroscopic and microscopic aspects of the reproductive biology of the Giant Electric Ray Narcine entemedor, a viviparous elasmobranch targeted by commercial fishers in Mexico. A total of 305 individual rays were captured (260 females, 45 males); all males were sexually mature. The median size at maturity for females was estimated to be 58.5 cm TL, the median size at pregnancy was 63.7 cm TL, and the median size at maternity was 66.2 cm TL. The range of ovarian follicles recorded per female was 1–69; the maximum ovarian fecundity of fully grown vitellogenic oocytes was 17, and uterine fecundity ranged from 1 to 24 embryos per female. The lengths of the oblong ovarian follicles varied significantly among months, and the largest ovarian follicles were found in July, August, and September. Median embryo size was largest in August, and the size at birth was between 12.4 and 14.5 cm TL. Histological evidence of secretions from the glandular tissue of the uterine villi indicate that this species probably has limited histotrophy as a reproductive mode. Vitellogenesis in the ovary occurred synchronously with gestation in the uterus. The Giant Electric Ray has a continuous annual reproductive cycle; a period of ovulation occurs between May and September and two peaks of parturition, one in January and one in August, occur, suggesting that embryonic diapause occurs in some individuals. These results provide useful information for the management of this important commercial species in BahĂa de La Paz, Mexico, and will allow possible modification of the current Mexican regulations to enable better protection of this species
- …