33 research outputs found

    Probiotic interventions in infancy: Benefit and Safety Assessment of Extended Applications

    Get PDF
    Immaturity of the gut barrier system in the newborn has been seen to underlie a number of chronic diseases originating in infancy and manifesting later in life. The gut microbiota and breast milk provide the most important maturing signals for the gut-related immune system and reinforcement of the gut mucosal barrier function. Recently, the composition of the gut microbiota has been proposed to be instrumental in control of host body weight and metabolism as well as the inflammatory state characterizing overweight and obesity. On this basis, inflammatory Western lifestyle diseases, including overweight development, may represent a potential target for probiotic interventions beyond the well documented clinical applications. The purpose of the present undertaking was to study the efficacy and safety of perinatal probiotic intervention. The material comprised two ongoing, prospective, double-blind NAMI (Nutrition, Allergy, Mucosal immunology and Intestinal microbiota) probiotic interventions. In the mother-infant nutrition and probiotic study altogether 256 women were randomized at their first trimester of pregnancy into a dietary intervention and a control group. The intervention group received intensive dietary counselling provided by a nutritionist, and were further randomized at baseline, double-blind, to receive probiotics (Lactobacillus rhamnosus GG and Bifidobacterium lactis) or placebo. The intervention period extended from the first trimester of pregnancy to the end of exclusive breastfeeding. In the allergy prevention study altogether 159 women were randomized, double-blind, to receive probiotics (Lactobacillus rhamnosus GG) or placebo 4 weeks before expected delivery, the intervention extending for 6 months postnatally. Additionally, patient data on all premature infants with very low birth weight (VLBW) treated in the Department of Paediatrics, Turku University Hospital, during the years 1997 - 2008 were utilized. The perinatal probiotic intervention reduced the risk of gestational diabetes mellitus (GDM) in the mothers and perinatal dietary counselling reduced that of fetal overgrowth in GDM-affected pregnancies. Early gut microbiota modulation with probiotics modified the growth pattern of the child by restraining excessive weight gain during the first years of life. The colostrum adiponectin concentration was demonstrated to be dependent on maternal diet and nutritional status during pregnancy. It was also higher in the colostrum received by normal-weight compared to overweight children at the age of 10 years. The early perinatal probiotic intervention and the postnatal probiotic intervention in VLBW infants were shown to be safe. To conclude, the findings in this study provided clinical evidence supporting the involvement of the initial microbial and nutritional environment in metabolic programming of the child. The manipulation of early gut microbial communities with probiotics might offer an applicable strategy to impact individual energy homeostasis and thus to prevent excessive body-weight gain. The results add weight to the hypothesis that interventions aiming to prevent obesity and its metabolic consequences later in life should be initiated as early as during the perinatal period.Siirretty Doriast

    Glukokortikoidiin reagoimaton imeväisen kutiseva ihottuma

    Get PDF

    Tarttuuko SARS-CoV-2 pinnoilta?

    Get PDF

    Respiratory Viral Infections in Athletes: Many Unanswered Questions

    Get PDF
    Upper respiratory tract infections ("common cold") are the most common acute illnesses in elite athletes. Numerous studies on exercise immunology have proposed that intense exercise may increase susceptibility to respiratory infections. Virological data to support that view are sparse, and several fundamental questions remain. Immunity to respiratory viral infections is highly complex, and there is a lack of evidence that minor short- or long-term alterations in immunity in elite athletes have clinical implications. The degree to which athletes are infected by respiratory viruses is unclear. During major sport events, athletes are at an increased risk of symptomatic infections caused by the same viruses as those in the general population. The symptoms are usually mild and self-limiting. It is anecdotally known that athletes commonly exercise and compete while having a respiratory viral infection; there are no virological studies to suggest that such activity would affect either the illness or the performance. The risk of myocarditis exists. Which simple mitigation procedures are crucial for effective control of seasonal respiratory viral infections is not known

    Huippu-urheilijan hengitystieinfektiot ja niiden haitat

    Get PDF
    Kova fyysinen ja psyykkinen rasitus voi heikentää elimistön puolustusmekanismeja useilla tavoilla. Kilpailut, matkustaminen, yhteismajoitus, ihmisjoukot sekä uni- ja energiavaje lisäävät urheilijan alttiutta sairastua hengitystieinfektioihin. Virusinfektiot leviävät herkästi urheilujoukkueissa. Arvokilpailuissa huippu-urheilijan riski sairastua äkilliseen viruksen aiheuttamaan hengitystieinfektioon on seitsenkertainen verrattuna normaalisti liikkuviin verrokkeihin. Bakteeri-infektiot ovat harvinaisia. Urheilijan infektioalttiuden mekanismit tunnetaan huonosti. Virusinfektion komplikaatioriskistä ja vaikutuksesta suorituskykyyn ei ole riittävästi tutkittua tietoa. Infektioita voidaan vähentää välttämällä kontaktia sairastuneisiin ja huolellisella käsien pesulla. Respiratoriset virukset leviävät kuitenkin monella tapaa, ja tartuntojen välttäminen on vaikeata. Arjen kokonaiskuormituksen hallinta, stressinhallintaharjoittelu sekä riittävä uni ja energiansaanti tukevat elimistön kykyä suojautua taudinaiheuttajia vastaan

    Survey of Viral Reactivations in Elite Athletes: A Case-Control Study

    Get PDF
    Exercise-induced immune perturbations have been proposed to increase susceptibility to viral infections. We investigated the replication of persisting viruses as indicators of immune function in elite cross-country skiers after ten months of sustained high-performance exercise. The viruses evaluated, nine human herpesviruses (HHVs) and torque teno virus (TTV), are typically restrained in health but replicate actively in immunosuppressed individuals. We collected sera from 27 Finnish elite cross-country skiers at the end of the competition’s season and 27 matched controls who perform moderate exercise. We quantified all the HHVs and—TTV via highly sensitive qPCRs. To verify equal past exposures between the groups, we assessed the IgG antibody prevalences toward HHV-4 (Epstein–Barr virus, EBV) and HHV-5 (human cytomegalovirus, HCMV). We found equal TTV DNA prevalences in athletes (63%) and controls (63%) and loads with respective geometric means of 1.7 × 103 and 1.2 × 103 copies/mL of serum. Overall, the copy numbers were low and consistent with those of healthy individuals. Neither of the groups presented with herpesvirus viremia despite similar past exposures to HHVs (seroprevalences of EBV 70% vs. 78% and HCMV 52% vs. 44% in athletes and controls, respectively). We found no evidence of increased replication of persistent viruses in elite athletes, arguing against impaired viral immunity due to high-performance exercise

    Survey of Viral Reactivations in Elite Athletes: A Case-Control Study

    Get PDF
    Exercise-induced immune perturbations have been proposed to increase susceptibility to viral infections. We investigated the replication of persisting viruses as indicators of immune function in elite cross-country skiers after ten months of sustained high-performance exercise. The viruses evaluated, nine human herpesviruses (HHVs) and torque teno virus (TTV), are typically restrained in health but replicate actively in immunosuppressed individuals. We collected sera from 27 Finnish elite cross-country skiers at the end of the competition’s season and 27 matched controls who perform moderate exercise. We quantified all the HHVs and—TTV via highly sensitive qPCRs. To verify equal past exposures between the groups, we assessed the IgG antibody prevalences toward HHV-4 (Epstein–Barr virus, EBV) and HHV-5 (human cytomegalovirus, HCMV). We found equal TTV DNA prevalences in athletes (63%) and controls (63%) and loads with respective geometric means of 1.7 × 103 and 1.2 × 103 copies/mL of serum. Overall, the copy numbers were low and consistent with those of healthy individuals. Neither of the groups presented with herpesvirus viremia despite similar past exposures to HHVs (seroprevalences of EBV 70% vs. 78% and HCMV 52% vs. 44% in athletes and controls, respectively). We found no evidence of increased replication of persistent viruses in elite athletes, arguing against impaired viral immunity due to high-performance exercise

    Increased risk of respiratory viral infections in elite athletes: A controlled study

    Get PDF
    BackgroundRespiratory symptoms are commonly recognised in elite athletes. The occurrence, etiology and clinical presentation of the illnesses in athletes is unclear.MethodsWe performed a prospective controlled study of respiratory viral infections in Team Finland during Nordic World Ski Championships 2019. There were 26 athletes and 36 staff members. Nasal swabs were taken at the onset of a symptom and on days 1, 7, and 13 during the follow-up of 14 days. Respiratory viruses were searched for by 3 different molecular multiplex tests. Fifty-two matched control subjects were studied in Finland during the same period.ResultsTen out of 26 (38%) athletes, 6 out of 36 (17%) staff, and 3 out of 52 (6%) control subjects experienced symptoms of respiratory infection (p = 0.0013). The relative risks for acquiring symptomatic infection were 6.7 (95% confidence interval [CI], 2.1–21.0) of athletes and 2.9 (95% CI, 0.84–10.0) of the staff as compared to the controls. Asymptomatic infections were identified in 8%, 22%, and 19%, respectively (p = 0.30). The etiology of respiratory infections was detected in 84% of the cases.ConclusionThe athletes had a 7-fold increase in the risk of illness compared to normally exercising control subjects.</div

    Survey of viral reactivations in elite athletes: A case-control study

    Get PDF
    Exercise-induced immune perturbations have been proposed to increase susceptibility to viral infections. We investigated the replication of persisting viruses as indicators of immune function in elite cross-country skiers after ten months of sustained high-performance exercise. The viruses evaluated, nine human herpesviruses (HHVs) and torque teno virus (TTV), are typically restrained in health but replicate actively in immunosuppressed individuals. We collected sera from 27 Finnish elite cross-country skiers at the end of the competition’s season and 27 matched controls who perform moderate exercise. We quantified all the HHVs and—TTV via highly sensitive qPCRs. To verify equal past exposures between the groups, we assessed the IgG antibody prevalences toward HHV-4 (Epstein–Barr virus, EBV) and HHV-5 (human cytomegalovirus, HCMV). We found equal TTV DNA prevalences in athletes (63%) and controls (63%) and loads with respective geometric means of 1.7 × 103 and 1.2 × 103 copies/mL of serum. Overall, the copy numbers were low and consistent with those of healthy individuals. Neither of the groups presented with herpesvirus viremia despite similar past exposures to HHVs (seroprevalences of EBV 70% vs. 78% and HCMV 52% vs. 44% in athletes and controls, respectively). We found no evidence of increased replication of persistent viruses in elite athletes, arguing against impaired viral immunity due to high-performance exercise.</p

    Preterm infant meconium microbiota transplant induces growth failure, inflammatory activation, and metabolic disturbances in germ-free mice

    Get PDF
    Preterm birth may result in adverse health outcomes. Very preterm infants typically exhibit postnatal growth restriction, metabolic disturbances, and exaggerated inflammatory responses. We investigated the differences in the meconium microbiota composition between very preterm (37 weeks) human neonates by 16S rRNA gene sequencing. Human meconium microbiota transplants to germ-free mice were conducted to investigate whether the meconium microbiota is causally related to the preterm infant phenotype in an experimental model. Our results indicate that very preterm birth is associated with a distinct meconium microbiota composition. Fecal microbiota transplant of very preterm infant meconium results in impaired growth, altered intestinal immune function, and metabolic parameters as compared to term infant meconium transplants in germ-free mice. This finding suggests that measures aiming to minimize the long-term adverse consequences of very preterm birth should be commenced during pregnancy or directly after birth.</p
    corecore