3,620 research outputs found

    Kaluza-Klein towers for real vector fields in flat space

    Full text link
    We consider a free real vector field propagating in a five dimensional flat space with its fifth dimension compactified either on a strip or on a circle and perform a Kalaza Klein reduction which breaks SO(4,1) invariance while reserving SO(3,1) invariance. Taking into account the Lorenz gauge condition, we obtain from the most general hermiticity conditions for the relevant operators all the allowed boundary conditions which have to be imposed on the fields in the extra-dimension. The physical Kaluza-Klein mass towers, which result in a four-dimensional brane, are determined in the different distinct allowed cases. They depend on the bulk mass, on the parameters of the boundary conditions and on the extra parameter present in the Lagrangian. In general, they involve vector states together with accompanying scalar states.Comment: 28 pages, 4 independent table

    The Radon Monitoring System in Daya Bay Reactor Neutrino Experiment

    Full text link
    We developed a highly sensitive, reliable and portable automatic system (H3^{3}) to monitor the radon concentration of the underground experimental halls of the Daya Bay Reactor Neutrino Experiment. H3^{3} is able to measure radon concentration with a statistical error less than 10\% in a 1-hour measurement of dehumidified air (R.H. 5\% at 25∘^{\circ}C) with radon concentration as low as 50 Bq/m3^{3}. This is achieved by using a large radon progeny collection chamber, semiconductor α\alpha-particle detector with high energy resolution, improved electronics and software. The integrated radon monitoring system is highly customizable to operate in different run modes at scheduled times and can be controlled remotely to sample radon in ambient air or in water from the water pools where the antineutrino detectors are being housed. The radon monitoring system has been running in the three experimental halls of the Daya Bay Reactor Neutrino Experiment since November 2013

    LArPix: Demonstration of low-power 3D pixelated charge readout for liquid argon time projection chambers

    Full text link
    We report the demonstration of a low-power pixelated readout system designed for three-dimensional ionization charge detection and digital readout of liquid argon time projection chambers (LArTPCs). Unambiguous 3D charge readout was achieved using a custom-designed system-on-a-chip ASIC (LArPix) to uniquely instrument each pad in a pixelated array of charge-collection pads. The LArPix ASIC, manufactured in 180 nm bulk CMOS, provides 32 channels of charge-sensitive amplification with self-triggered digitization and multiplexed readout at temperatures from 80 K to 300 K. Using an 832-channel LArPix-based readout system with 3 mm spacing between pads, we demonstrated low-noise (<<500 e−^- RMS equivalent noise charge) and very low-power (<<100 μ\muW/channel) ionization signal detection and readout. The readout was used to successfully measure the three-dimensional ionization distributions of cosmic rays passing through a LArTPC, free from the ambiguities of existing projective techniques. The system design relies on standard printed circuit board manufacturing techniques, enabling scalable and low-cost production of large-area readout systems using common commercial facilities. This demonstration overcomes a critical technical obstacle for operation of LArTPCs in high-occupancy environments, such as the near detector site of the Deep Underground Neutrino Experiment (DUNE).Comment: 19 pages, 10 figures, 1 ancillary animation. V3 includes minor revisions based on referee comment

    Two-Channel Kondo Lattice: An Incoherent Metal

    Full text link
    The two-channel Kondo lattice model is examined with a Quantum Monte Carlo simulation in the limit of infinite dimensions. We find non-fermi-liquid behavior at low temperatures including a finite low-temperature single-particle scattering rate, the lack of a fermi edge and Drude weight. However, the low-energy density of electronic states is finite. Thus, we identify this system as an incoherent metal. We discuss the relevance of our results for concentrated heavy fermion metals with non-Fermi-Liquid behavior.Comment: LaTex, 5 pages, 3 Postscript files. Revision - in reference 5 and 6(a

    Constitutive turnover of histone H2A.Z at yeast promoters requires the preinitiation complex

    Get PDF
    The assembly of the preinitiation complex (PIC) occurs upstream of the +1 nucleosome which, in yeast, obstructs the transcription start site and is frequently assembled with the histone variant H2A.Z. To understand the contribution of the transcription machinery in the disassembly of the +1 H2A.Z nucleosome, conditional mutants were used to block PIC assembly. A quantitative ChIP-seq approach, which allows detection of global occupancy change, was employed to measure H2A.Z occupancy. Blocking PIC assembly resulted in promoter-specific H2A.Z accumulation, indicating that the PIC is required to evict H2A.Z. By contrast, H2A.Z eviction was unaffected upon depletion of INO80, a remodeler previously reported to displace nucleosomal H2A.Z. Robust PIC-dependent H2A.Z eviction was observed at active and infrequently transcribed genes, indicating that constitutive H2A.Z turnover is a general phenomenon. Finally, sites with strong H2A.Z turnover precisely mark transcript starts, providing a new metric for identifying cryptic and alternative sites of initiation
    • …
    corecore