2 research outputs found

    Soil physical indicators of management systems in traditional agricultural areas under manure application

    No full text
    <div><p>ABSTRACT Studies of the successive application of manure as fertilizer and its combined effect with long-term soil management systems are important to the identification of the interdependence of physical attributes. The aim of this study was to evaluate changes in the physical properties of a Rhodic Kandiudox under management systems employing successive applications of pig slurry and poultry litter, and select physical indicators that distinguish these systems using canonical discriminant analysis (CDA). The systems consisting of treatments including land use, management and the application time of organic fertilizers are described as follows: silage maize under no-tillage (NT-M7 years); silage maize under conventional tillage (CT-M20 years); annual pasture with chisel plowing (CP-P3 years); annual pasture with chisel plowing (CP-P15 years); perennial pasture without tillage (NT-PP20 years); and no-tillage yerba mate (NT-YM20 years) and were compared with native forest (NF) and native pasture (NP). Soil samples were collected from the layers at the following depths: 0.0-0.05, 0.05-0.10, and 0.10-0.20 m, and were analyzed for bulk density, porosity, aggregation, flocculation, penetration resistance, water availability and total clay content. Canonical discriminant analysis was an important tool in the study of physical indicators of soil quality. Organic fertilization, along with soil management, influences soil structure and its porosity. Total porosity was the most important physical property in the distinction of areas with management systems and application times of manure for the 0.0-0.05 and 0.10-0.20 m layers. Soil aeration and micropores differentiated areas in the 0.05-0.10 m layer. Animal trampling and machinery traffic were the main factors inducing compaction of this clayey soil.</p></div

    Phosphorus fractions in soil after successive crops of Pinus taeda L. without fertilization

    No full text
    <div><p>ABSTRACT: Pinus cultivation without fertilization is a common practice in southern Brazil, which can induce a decline in the availability of phosphorus (P) in the soil. The purpose of this study was to evaluate the changes in phosphorus fractions in a Humic Cambisol subjected to continuous Pinus taeda L. cultivation without fertilization. Two forest stands were evaluated, after 16 years of Pinus cultivation (1st crop) and 49 years (3rd crop), when soil samples were collected (layers 0-10, 10-20, 20-40, 40-60, and 60-80cm) from six trenches per forest. In soil samples, the P contained in organic (Po) and inorganic (Pi) forms was determined by sequential chemical fractionation. Labile inorganic P fractions remained unchanged after the different cultivation periods. However, the labile organic fractions declined from the first to the third cycle (from 70.6 to 39.8mg dm-3 in the 0-10cm layer), indicating that these forms influence the buffering capacity of labile Pi. The moderately labile organic P acted as a P drain, increasing its percentage of the total, from 34.7 to 56.3%, from the first to the third crop. Soil cultivation for 49 years with Pinus taeda resulted in a reduction of the organic P content, indicating that for this soil use, this P form should be used to diagnose P availability and fertilization requirements.</p></div
    corecore