12 research outputs found
Querying Proofs (Work in Progress)
We motivate and introduce the basis for a query language designed for inspecting electronic representations of proofs. We argue that there is much to learn from large proofs beyond their validity, and that a dedicated query language can provide a principled way of implementing a family of useful operations
Compensation for geometrical deviations in additive manufacturing
The design of additive manufacturing processes, especially for batch production in industrial practice, is of high importance for the propagation of new additive manufacturing technology. Manual redesign procedures of the additive manufactured parts based on discrete measurement data or numerical meshes are error prone and hardly automatable. To achieve the required final accuracy of the parts, often, various iterations are necessary. To address these issues, a data-driven geometrical compensation approach is proposed that adapts concepts from forming technology. The measurement information of a first calibration cycle of manufactured parts is the basis of the approach. Through non-rigid transformations of the part geometry, a new shape for the subsequent additive manufacturing process was derived in a systematic way. Based on a purely geometrical approach, the systematic portion of part deviations can be compensated. The proposed concept is presented first and was applied to a sample fin-shaped part. The deviation data of three manufacturing cycles was utilised for validation and verification
Monads and Modular Term Rewriting
. Monads can be used to model term rewriting systems by generalising the well-known equivalence between universal algebra and monads on the category Set. In [Lu96], this semantics was used to give a purely categorical proof of the modularity of confluence for the disjoint union of term rewriting systems. This paper provides further support for monadic semantics of rewriting by giving a categorical proof of the most general theorem concerning the modularity of strong normalisation. In the process, we improve upon the technical aspects of earlier work. 1 Introduction Term rewriting systems (TRSs) are widely used throughout computer science as they provide an abstract model of computation while retaining a relatively simple syntax and semantics. Reasoning about large term rewriting systems can be very difficult and an alternative is to define structuring operations which build large term rewriting systems from smaller ones. Of particular interest is whether key properties are modular, th..
Translating Haskell to Isabelle
Abstract. We present partial translations of Haskell programs to Isabelle that have been implemented as part of the Heterogeneous Tool Set. The the target logic is Isabelle/HOLCF, and the translation is based on a shallow embedding approach.
Compensation for Geometrical Deviations in Additive Manufacturing
The design of additive manufacturing processes, especially for batch production in industrial practice, is of high importance for the propagation of new additive manufacturing technology. Manual redesign procedures of the additive manufactured parts based on discrete measurement data or numerical meshes are error prone and hardly automatable. To achieve the required final accuracy of the parts, often, various iterations are necessary. To address these issues, a data-driven geometrical compensation approach is proposed that adapts concepts from forming technology. The measurement information of a first calibration cycle of manufactured parts is the basis of the approach. Through non-rigid transformations of the part geometry, a new shape for the subsequent additive manufacturing process was derived in a systematic way. Based on a purely geometrical approach, the systematic portion of part deviations can be compensated. The proposed concept is presented first and was applied to a sample fin-shaped part. The deviation data of three manufacturing cycles was utilised for validation and verification
Three-dimensional printing creates models for surgical planning of aortic valve replacement after previous coronary bypass grafting.
PURPOSE
Resternotomy for aortic valve replacement in patients with previous coronary artery bypass grafting and an internal mammary artery graft may be a surgical problem. Thus, we are exploring the effect of using rapid prototyping techniques for surgical planning and intraoperative orientation during aortic valve replacement after previous coronary artery bypass grafting (CABG).
DESCRIPTION
As a proof of concept, we studied a patient who had undergone CABG 5 years earlier. At that time the patient received a left internal mammary artery graft to the left anterior descending artery and a venous graft to the right coronary artery. Now the patient required aortic valve replacement due to symptomatic aortic valve stenosis. The left internal mammary artery bypass and the right coronary artery bypass were patent and showed good flow in the angiography. The patient was examined by 128-slice computed tomography. The image data were visualized and reconstructed. Afterwards, a replica showing the anatomic structures was fabricated using a rapid prototyping machine.
EVALUATION
Using data derived from 128-slice computed tomography angiography linked to proprietary software, we were able to create three-dimensional reconstructions of the vascular anatomy after the previous CABG. The models were sterilized and taken to the operating theatre for orientation during the surgical procedure.
CONCLUSIONS
Stereolithographic replicas are helpful for choosing treatment strategies in surgical planning and for intraoperative orientation during reoperations of patients with previous CABG
HCV RNA levels at baseline according to IFNL3 genotypes.
<p>(A) HCV RNA levels at baseline for patients with favourable and non-favorable rs1297860 genotype. (B) HCV RNA levels at baseline for patients with favourable and non-favorable rs8099917 genotype.</p
Flow chart of patients with available IFNL3 and IFN-L4 genotype.
<p>Flow chart of patients with available IFNL3 and IFN-L4 genotype.</p