15 research outputs found

    Immunohistochemical Evidence from APP-Transgenic Mice for Glutaminyl Cyclase as Drug Target to Diminish pE-Abeta Formation

    Get PDF
    Oligomeric assemblies of neurotoxic amyloid beta (Abeta) peptides generated by proteolytical processing of the amyloid precursor protein (APP) play a key role in the pathogenesis of Alzheimer's disease (AD). In recent years, a substantial heterogeneity of Abeta peptides with distinct biophysical and cell biological properties has been demonstrated. Among these, a particularly neurotoxic and disease-specific Abeta variant is N-terminally truncated and modified to pyroglutamate (pE-Abeta). Cell biological and animal experimental studies imply the catalysis of this modification by the enzyme glutaminyl cyclase (QC). However, direct histopathological evidence in transgenic animals from comparative brain region and cell type-specific expression of transgenic hAPP and QC, on the one hand, and on the formation of pE-Abeta aggregates, on the other, is lacking. Here, using single light microscopic, as well as triple immunofluorescent, labeling, we report the deposition of pE-Abeta only in the brain regions of APP-transgenic Tg2576 mice with detectable human APP and endogenous QC expression, such as the hippocampus, piriform cortex, and amygdala. Brain regions showing human APP expression without the concomitant presence of QC (the anterodorsal thalamic nucleus and perifornical nucleus) do not display pE-Abeta plaque formation. However, we also identified brain regions with substantial expression of human APP and QC in the absence of pE-Abeta deposition (the Edinger-Westphal nucleus and locus coeruleus). In these brain regions, the enzymes required to generate N-truncated Abeta peptides as substrates for QC might be lacking. Our observations provide additional evidence for an involvement of QC in AD pathogenesis via QC-catalyzed pE-Abeta formation

    Calcium sensitization as a positive inotropic mechanism in diseased rat and human heart

    No full text
    The two isomers of the positive inotropic compound EMD 53998, (+)EMD 57033 and (-)EMD 57439, possess selective calcium sensitizing and phosphodiesterase (PDE) inhibitory properties, respectively. We measured the pharmacological responses to both enantio-mers in isolated rat cardiac and vascular tissues and in muscles from severely failing human hearts. We also measured positive inotropic and chronotropic responses to EMD 57033 in cardiac tissues from rats with thyroid dysfunction, diabetes, or hypertension. Both compounds increased force of contraction in isolated rat cardiac tissues, although the ventricular response to EMD 57439 was only 10% that of calcium chloride. Forskolin pretreatment potentiated responses to both compounds in atria but only to EMD 57439 in ventricles. Hyperthyroidism increased ventricular responses to EMD 57033 relative to calcium chloride; hypothyroidism and diabetes decreased these responses. Ventricular responses were unchanged in hypertensive rats. Both enantiomers produced positive inotropy in human isolated right atrial trabeculae, although the maximal increases were only 14% (EMD 57033) and 26% (EMD 57439) that of calcium chloride. In rat thoracic aortic rings, both enantiomers produced relaxation; the responses due to EMD 57033 were endothelium dependent. Thus, calcium sensitization produces positive inotropy and vascular relaxation in rats. Positive chronotropic responses to EMD 57033 are most likely due to PDE inhibition. The limited inotropic response in severely failing human myocardium, together with possible vasorelaxation, may provide cardiac support in heart failure without an excessive increase in cardiac O demand

    Passive Aβ immunotherapy: Current achievements and future perspectives

    No full text
    Passive immunotherapy has emerged as a very promising approach for the treatment of Alzheimer’s disease and other neurodegenerative disorders, which are characterized by the misfolding and deposition of amyloid peptides. On the basis of the amyloid hypothesis, the majority of antibodies in clinical development are directed against amyloid β (Aβ), the primary amyloid component in extracellular plaques. This review focuses on the current status of Aβ antibodies in clinical development, including their characteristics and challenges that came up in clinical trials with these new biological entities (NBEs). Emphasis is placed on the current view of common side effects observed with passive immunotherapy, so-called amyloid-related imaging abnormalities (ARIAs), and potential ways to overcome this issue. Among these new ideas, a special focus is placed on molecules that are directed against post-translationally modified variants of the Aβ peptide, an emerging approach for development of new antibody molecules

    Combination of the Glutaminyl Cyclase Inhibitor PQ912 (Varoglutamstat) and the Murine Monoclonal Antibody PBD-C06 (m6) Shows Additive Effects on Brain Aβ Pathology in Transgenic Mice

    No full text
    Compelling evidence suggests that pyroglutamate-modified Aβ (pGlu3-Aβ; AβN3pG) peptides play a pivotal role in the development and progression of Alzheimer’s disease (AD). Approaches targeting pGlu3-Aβ by glutaminyl cyclase (QC) inhibition (Varoglutamstat) or monoclonal antibodies (Donanemab) are currently in clinical development. Here, we aimed at an assessment of combination therapy of Varoglutamstat (PQ912) and a pGlu3-Aβ-specific antibody (m6) in transgenic mice. Whereas the single treatments at subtherapeutic doses show moderate (16–41%) but statistically insignificant reduction of Aβ42 and pGlu-Aβ42 in mice brain, the combination of both treatments resulted in significant reductions of Aβ by 45–65%. Evaluation of these data using the Bliss independence model revealed a combination index of ≈1, which is indicative for an additive effect of the compounds. The data are interpreted in terms of different pathways, in which the two drugs act. While PQ912 prevents the formation of pGlu3-Aβ in different compartments, the antibody is able to clear existing pGlu3-Aβ deposits. The results suggest that combination of the small molecule Varoglutamstat and a pE3Aβ-directed monoclonal antibody may allow a reduction of the individual compound doses while maintaining the therapeutic effect

    El Diario de Pontevedra : periódico liberal: Ano XXVI Número 7424 - 1909 febreiro 5

    No full text
    Background: Pyroglutamylation of truncated Aβ peptides, which is catalysed by enzyme glutaminyl cyclase (QC), generates pE-Aβ species with enhanced aggregation propensities and resistance to most amino-peptidases and endo-peptidases. pE-Aβ species have been identified as major constituents of Aβ plaques and reduction of pE-Aβ species is associated with improvement of cognitive tasks in animal models of Alzheimer’s disease (AD). Pharmacological inhibition of QC has thus emerged as a promising therapeutic approach for AD. Here, we question whether cerebrospinal fluid (CSF) QC enzymatic activity differs between AD patients and controls and whether inflammatory or angiogenesis mediators, some of which are potential QC substrates, and/or Aβ peptides may serve as pharmacodynamic read-outs for QC inhibition. Methods: QC activity, Aβ peptides and inflammatory or angiogenesis mediators were measured in CSF of a clinically well-characterized cohort of 20 mild AD patients, 20 moderate AD patients and 20 subjective memory complaints (SMC) controls. Correlation of these parameters with core diagnostic CSF AD biomarkers (Aβ42, tau and p-tau) and clinical features was evaluated. Results: QC activity shows a tendency to decrease with AD progression (p = 0.129). The addition of QC activity to biomarkers tau and p-tau significantly increases diagnostic power (ROC-AUCTAU = 0.878, ROC-AUCTAU&QC = 0.939 and ROC-AUCpTAU = 0.820, ROC-AUCpTAU&QC = 0.948). In AD and controls, QC activity correlates with Aβ38 (r = 0.83, p 0.5, p 0.35, p = <0.0057). QC activity does not correlate with MMSE or ApoE genotype. Conclusions: Aβ38, Aβ40 and angiogenesis mediators (Flt1, Tie2, VEGFD, VCAM-1 and ICAM-1) are potential pharmacodynamic markers of QC inhibition, because their levels closely correlate with QC activity in AD patients. The addition of QC activity to core diagnostic CSF biomarkers may be of specific interest in clinical cases with discordant imaging and biochemical biomarker results
    corecore