114,679 research outputs found

    Electron multiplier development /phase 1/

    Get PDF
    Fabrication of aluminum oxide thin film window for capillary type photomultiplier tube

    Film-stability in a vertical rotating tube with a core-gas flow

    Get PDF
    Linear hydrodynamic stability of interface between Newtonian liquid film and core fluid under influence of swirl, core flow, and gravit

    On the origin of kinematic distribution of the sub-parsec young stars in the Galactic center

    Full text link
    Within a half-parsec from the Galactic center (GC), there is a population of coeval young stars which appear to reside in a coherent disk. Surrounding this dynamically-cool stellar system, there is a population of stars with a similar age and much larger eccentricities and inclinations relative to the disk. We propose a hypothesis for the origin of this dynamical dichotomy. Without specifying any specific mechanism, we consider the possibility that both stellar populations were formed within a disk some 6 Myr ago. But this orderly structure was dynamically perturbed outside-in by an intruding object with a mass ~10^4 Msun, which may be an intermediate-mass black hole (IMBH) or a dark stellar cluster hosting an IMBH. We suggest that the perturber migrated inward to ~0.15-0.3pc from the GC under the action of dynamical friction. Along the way, it captured many stars in the outer disk region into its mean-motion resonance, forced them to migrate with it, closely encountered with them, and induced the growth of their eccentricity and inclination. But stars in the inner regions of the disk retain their initial coplanar structure. We predict that some of the inclined and eccentric stars surrounding the disk may have similar Galactocentric semimajor axis. Future precision determination of their kinematic distribution of these stars will not only provide a test for this hypothesis but also evidences for the presence of an IMBH or a dark cluster at the immediate proximity of the massive black hole at the GC. (abridged)Comment: 14 pages, including 13 figures, typo corrected, reference added, ApJ in pres

    Black Holes in Higher-Derivative Gravity

    Get PDF
    Extensions of Einstein gravity with higher-order derivative terms arise in string theory and other effective theories, as well as being of interest in their own right. In this paper we study static black-hole solutions in the example of Einstein gravity with additional quadratic curvature terms. A Lichnerowicz-type theorem simplifies the analysis by establishing that they must have vanishing Ricci scalar curvature. By numerical methods we then demonstrate the existence of further black-hole solutions over and above the Schwarzschild solution. We discuss some of their thermodynamic properties, and show that they obey the first law of thermodynamics.Comment: Typos corrected, discussion added, figure changed. 4 pages, 6 figure

    Spectrum-generating Symmetries for BPS Solitons

    Get PDF
    We show that there exist nonlinearly realised duality symmetries that are independent of the standard supergravity global symmetries, and which provide active spectrum-generating symmetries for the fundamental BPS solitons. The additional ingredient, in any spacetime dimension, is a single scaling transformation that allows one to map between BPS solitons with different masses. Without the inclusion of this additional transformation, which is a symmetry of the classical equations of motion, but not the action, it is not possible to find a spectrum-generating symmetry. The necessity of including this scaling transformation highlights the vulnerability of duality multiplets to quantum anomalies. We argue that fundamental BPS solitons may be immune to this threat.Comment: References added. Latex, 29 page

    Lichnerowicz Modes and Black Hole Families in Ricci Quadratic Gravity

    Full text link
    A new branch of black hole solutions occurs along with the standard Schwarzschild branch in nn-dimensional extensions of general relativity including terms quadratic in the Ricci tensor. The standard and new branches cross at a point determined by a static negative-eigenvalue eigenfunction of the Lichnerowicz operator, analogous to the Gross-Perry-Yaffe eigenfunction for the Schwarzschild solution in standard n=4n=4 dimensional general relativity. This static eigenfunction has two r\^oles: both as a perturbation away from Schwarzschild along the new black-hole branch and also as a threshold unstable mode lying at the edge of a domain of Gregory-Laflamme-type instability of the Schwarzschild solution for small-radius black holes. A thermodynamic analogy with the Gubser and Mitra conjecture on the relation between quantum thermodynamic and classical dynamical instabilities leads to a suggestion that there may be a switch of stability properties between the old and new black-hole branches for small black holes with radii below the branch crossing point.Comment: 33 pages, 8 figure
    corecore