129 research outputs found
Intelligent System for Playing Tarok
We present an advanced intelligent system for playing three-player tarok card game. The system is based on alpha-beta search with several enhancements such as fuzzy transposition table, which clusters strategically similar positions into generalised game states. Unknown distribution of other players’ cards is addressed by Monte Carlo sampling. Experimental results show an additional reduction in size of expanded 9-ply game-tree by a factor of 184. Human players judge the resulting program to play tarok reasonably well
Discovering Strategic Behaviour of Multi-Agent Systems in Adversary Settings
Can specific behaviour strategies be induced from low-level observations of two adversary groups of agents with limited domain knowledge? This paper presents a domain-independent Multi-Agent Strategy Discovering Algorithm (MASDA), which discovers strategic behaviour patterns of a group of agents under the described conditions. The algorithm represents the observed multi-agent activity as a graph, where graph connections correspond to performed actions and graph nodes correspond to environment states at action starts. Based on such data representation, the algorithm applies hierarchical clustering and rule induction to extract and describe strategic behaviour. The discovered strategic behaviour is represented visually as graph paths and symbolically as rules. MASDA was evaluated on RoboCup. Both soccer experts and quantitative evaluation confirmed the relevance of the discovered behaviour patterns
Protocol of the STRess at Work (STRAW) project : how to disentangle day-to-day occupational stress among academics based on EMA, physiological data, and smartphone sensor and usage data
Several studies have reported on increasing psychosocial stress in academia due to work environment risk factors like job insecurity, work-family conflict, research grant applications, and high workload. The STRAW project adds novel aspects to occupational stress research among academic staff by measuring day-to-day stress in their real-world work environments over 15 working days. Work environment risk factors, stress outcomes, health-related behaviors, and work activities were measured repeatedly via an ecological momentary assessment (EMA), specially developed for this project. These results were combined with continuously tracked physiological stress responses using wearable devices and smartphone sensor and usage data. These data provide information on workplace context using our self-developed Android smartphone app. The data were analyzed using two approaches: 1) multilevel statistical modelling for repeated data to analyze relations between work environment risk factors and stress outcomes on a within- and between-person level, based on EMA results and a baseline screening, and 2) machine-learning focusing on building prediction models to develop and evaluate acute stress detection models, based on physiological data and smartphone sensor and usage data. Linking these data collection and analysis approaches enabled us to disentangle and model sources, outcomes, and contexts of occupational stress in academia
Competitive Live Evaluation of Activity-recognition Systems
In order to ensure the validity and usability of activity recognition approaches, an agreement on a set of standard evaluation methods is needed. Due to the diversity of the sensors and other hardware employed, designing and accepting standard tests is a difficult task. This article presents an initiative to evaluate activity recognition systems: a living-lab evaluation established through an annual competition − EvAAL-AR (Evaluating Ambient Assisted Living Systems through Competitive Benchmarking − Activity Recognition). In the competition, each team brings their own activity-recognition system, which is evaluated live on the same activity scenario performed by an actor. The evaluation criteria attempt to capture the practical usability: recognition accuracy, user acceptance, recognition delay, installation complexity, and interoperability with ambient assisted living systems. The article also presents the competing systems with emphasis on two best-performing ones: (i) a system that achieved the best recognition accuracy, and (ii) a system that was evaluated as the best overall. Finally, the article presents lessons learned from the competition and ideas for future development of the competition and of the activity recognition field in general
Proof-of-concept trial results of the HeartMan mobile personal health system for self-management in congestive heart failure
This study tested the effectiveness of HeartMan—a mobile personal health system offering decisional support for management of congestive heart failure (CHF)—on health-related quality of life (HRQoL), self-management, exercise capacity, illness perception, mental and sexual health. A randomized controlled proof-of-concept trial (1:2 ratio of control:intervention) was set up with ambulatory CHF patients in stable condition in Belgium and Italy. Data were collected by means of a 6-min walking test and a number of standardized questionnaire instruments. A total of 56 (34 intervention and 22 control group) participants completed the study (77% male; mean age 63 years, sd 10.5). All depression and anxiety dimensions decreased in the intervention group (p < 0.001), while the need for sexual counselling decreased in the control group (p < 0.05). Although the group differences were not significant, self-care increased (p < 0.05), and sexual problems decreased (p < 0.05) in the intervention group only. No significant intervention effects were observed for HRQoL, self-care confidence, illness perception and exercise capacity. Overall, results of this proof-of-concept trial suggest that the HeartMan personal health system significantly improved mental and sexual health and self-care behaviour in CHF patients. These observations were in contrast to the lack of intervention effects on HRQoL, illness perception and exercise capacity
- …