151 research outputs found
NOVEL NANOSTRUCTURED HIGH-PERFORMANCE ANION EXCHANGE IONOMERS FOR ANION EXCHANGE MEMBRANE FUEL CELLS
poster abstractA novel block copolymer, styrene-ethylene/butylene-styrene (SEBS), was chosen as the starting material to prepare pendant quaternary ammonium-based ionomers with an ion-exchange-capacity (IEC) of 0.66, 1.30, and 1.54 meq g-1, denoted by QSEBS-L, QSEBS-M, and QSEBS-H, respectively. These QSEBS ionomers were demonstrated to have excellent dimensional stability against hydration without significantly sacrificing the ionic conductivity as compared to the widely studied polysulfone (PSf) based ionomers. The water uptake of the QSEBS-based ionomers depended on their functionality; a higher IEC in the ionomer resulted in more water uptake and a higher ionic conductivity. The MEAs fabricated with the QSEBS-M and QSEBS-H ionomers showed the best H2/O2 fuel cell performance with peak power densities reaching 210 mW cm-2 at 50 °C, which was significantly higher than that of the PSf-based ionomers (~30 mW cm-2). Electrochemical impedance spec-troscopy (EIS) analysis indicated that the superior fuel cell performance ob-served with the QSEBS-based ionomers can be attributed to: (1) the low in-ternal cell resistance due to good comparability of the QSEBS-based ionomers with the membranes and (2) the low mass transport and charge transport in both the anode and the cathode due to the excellent dimension-al stability and balanced conductivity-hydrophobicity originated by the unique morphology of the QSEBS-based ionomers. AFM phase imaging measurements of the QSEBS-based ionomers revealed unique nanostruc-tures containing isolated hydrophobic and continuous anion conducting hy-drophilic domains. By further optimizing the chemistry and morphology of the ionomers and the membranes, the resistance of the anode and cathode of the AEMFCs will be further reduced
Enhanced Second Harmonic Generation in Femtosecond Laser Inscribed Double-Cladding Waveguide of Nd:GdCOB Crystal
We report on the fabrication of double-cladding waveguides in Nd:GdCOB crystals by using femtosecond laser inscription with scanning speed of 0.5 mm/s. This prototype consists of two concentric tubular structures with nearly circular cross sections with different diameters. The fabricated cladding waveguides possess relatively low propagation losses of less than 0.65 dB/cm. The micro photoluminescence and second harmonic confocal images of the fabricated waveguides, which were performed by using a confocal microscope, have revealed that neither the fluorescence nor the nonlinear properties of the constituent crystals have been deteriorated during femtosecond lasermicromachining procedure. Under the pulsed laser pumping at fundamental wavelength of 1064 nm, the guided wave second harmonic generation (SHG) at 532 nm has been realized from the single and double cladding waveguides. Compared to the single-claddings (2.3 or 4.7%, depending on the diverse cladding diameters), the double cladding architecture has been found to be with enhanced SHG conversion efficiency (∼5.1%).The work was supported by the National Natural Science Foundation of China under Grants 11274203 and 11111130200, the Spanish Ministerio de Ciencia e Innovación (MICINN) through Consolider Program SAUUL CSD2007-00013 and Project FIS2009-09522, and the Centro de Láseres Pulsados (CLPU)
Implementation of nearly single-mode second harmonic generation by using a femtosecond laser written waveguiding structure in KTiOPO4 nonlinear crystal
We propose a hybrid photonic structure to realize guided-wave second harmonic generation (SHG) from near-infrared (NIR at 1064 nm) to visible (green light at 532 nm) wavelength with nearly single-mode output. The periodically arrayed tracks have been produced in KTiOPO4 nonlinear crystal by femtosecond laser writing, which enable efficient light field confinement with cladding-like refractive index distributions. Particularly, the track-cladding surrounded central region is free of any tracks, which serves as waveguiding cores. With designed core diameters, the structures could enable single-mode propagation at selected wavelength regime on purpose. In this work, the hybrid structure contains a larger-input core section and a connected smaller-output core section, which in principle supports nearly single mode for either fundamental pump beam or second harmonic beam in the input and output channel, respectively. Based on this hybrid structure we implement nearly single-mode SHG at 532 nm, and comparable normalized conversion efficiency (1.1%/W/cm) in the continuous-wave (CW) regime is obtained with respect to that (1.2%/W/cm) of multimode SHG from a single large-core channel structure. This work paves the way to realize mode profile controlling for selected wavelength by using laser-written arrayed tracks.The work is supported by the National Natural Science Foundation of China (61775120); Junta de Castilla y León (Project SA046U16) and MINECO (FIS2013-44174-P, FIS2015-71933-REDT)
Detection of MMP activity in living cells by a genetically encoded surface-displayed FRET sensor
AbstractMatrix metalloproteinases (MMPs) are secretory endopeptidases. They have been associated with invasion by cancer-cell and metastasis. Previous studies have demonstrated that proteolytic activity could be detected using fluorescence resonance energy transfer (FRET) with mutants of GFP. To monitor MMP activity, we constructed vectors that encoded a MMP Substrate Site (MSS) between YFP and CFP. In vitro, YFP–MSS–CFP can be used to detect MMP activity and 1,10-phenathroline inhibition of MMP activity. In living cells, MMPs are secreted proteins and act outside of the cell, and therefore YFP–MSS–CFPdisplay was anchored on the cellular surface to detect extracellular MMP. A pDisplay-YC vector expressing the YFP–MSS–CFPdisplay on the cellular surface was transfected into MCF-7 cells that expressed low levels of MMP. Efficient transfer of energy from excited CFP to YFP within the YFP–MSS–CFPdisplay molecule was observed, and real-time FRET was declined when MCF-7 was incubated with MMP2. However, no such transfer of energy was detected in the YFP–MSS–CFPdisplay expressing MDA-MB 435s cells, in which high secretory MMP2 were expressed. The FRET sensor YFP–MSS–CFPdisplay can sensitively and reliably monitor MMP activation in living cells and can be used for high-throughput screening of MMP inhibitors for anti-cancer treatments
Low-loss optical waveguides in β-BBO crystal fabricated by femtosecond-laser writing
We report on the fabrication and characterization of β-BBO depressed cladding waveguides fabricated by femtosecond-laser writing with no significant changes in the waveguide lattice microstructure. The waveguiding properties and the propagation losses of the cladding structures are investigated, showing good transmission properties at wavelengths of 400 and 800 nm along TM polarization. The minimum propagation losses are measured to be as low as 0.19 dB/cm at wavelength of 800 nm. The well-preserved waveguide lattice microstructure and good guiding performances with low propagation losses suggest the potential applications of the cladding waveguides in β-BBO crystal as novel integrated photonic devices.The work is supported by the 111 Project of China (No. B13029), Junta de Castilla y León (Project SA116U13), and Ministerio de EconomÃa y Competitividad (MINECO) (FIS2013-44174-P)
Femtosecond laser written optical waveguides in z-cut MgO:LiNbO3 crystal: Fabrication and optical damage investigation
We report on the fabrication of the dual-line waveguides and cladding waveguide in z-cut MgO:LiNbO3 crystal by femtosecond laser inscription. Due to the diverse modification of refractive index along TE/TM polarization induced by femtosecond laser pulses, the two geometries exhibit different guiding performances: the dual-line waveguides only support extraordinary index polarization, whilst the depressed cladding waveguide supports guidance along both extraordinary and ordinary index polarizations. The measured optical damage of these waveguides at the wavelength of 532 nm is higher than that of the previously reported ion-implanted waveguides in Zr-doped LiNbO3. The propagation loss of depressed cladding waveguide is measured as low as 0.94 dB/cm at 632.8 nm wavelength. It is found that the optical damage threshold (∼105 W/cm2) of the dual-line waveguide is one order of magnitude higher than that of the cladding waveguide (∼104 W/cm2).The work was supported by the National Natural Science Foundation of China (Nos.11274203, and 11511130017) and Spanish Ministerio de Educación y Ciencia (FIS2013-44174-P)
- …