3,612 research outputs found

    Effect Of Compound Formulation On The Production And Properties Of Epoxidised Natural Rubber (Enr-25) Foams.

    Get PDF
    In this study, Epoxidized Natural Rubber (ENR-25) formulations are compounded and tested to obtain a stable expandable rubber foam as well as to determine the foam cell physical morphology and its mechanical properties. The experiment was carried out by employing different ratio of rubber blend between ENR-25 and natural rubber (SMR-L), different amount of blowing agent which is Sodium Bicarbonate and different ratio of accelerator between Tetramethylthiuram-disulfenamide (TMTD) and N-cyclohexyl-2-benzotiazolsulfenamide (CBS)

    NICMOS Imaging of the Nuclei of Arp 220

    Full text link
    We report high resolution imaging of the ultraluminous infrared galaxy Arp 220 at 1.1, 1.6, and 2.22 microns with NICMOS on the HST. The diffraction-limited images at 0.1--0.2 arcsecond resolution clearly resolve both nuclei of the merging galaxy system and reveal for the first time a number of luminous star clusters in the circumnuclear envelope. The morphologies of both nuclei are strongly affected by dust obscuration, even at 2.2 microns : the primary nucleus (west) presents a crescent shape, concave to the south and the secondary (eastern) nucleus is bifurcated by a dust lane with the southern component being very reddened. In the western nucleus, the morphology of the 2.2 micron emission is most likely the result of obscuration by an opaque disk embedded within the nuclear star cluster. The morphology of the central starburst-cluster in the western nucleus is consistent with either a circumnuclear ring of star formation or a spherical cluster with the bottom half obscured by the embedded dust disk. Comparison of cm-wave radio continuum maps with the near-infrared images suggests that the radio nuclei lie in the dust disk on the west and near the highly reddened southern component of the eastern complex. The radio nuclei are separated by 0.98 arcseconds (corresponding to 364 pc at 77 Mpc) and the half-widths of the infrared nuclei are approximately 0.2-0.5 arcseconds. At least 8, unresolved infrared sources -- probably globular clusters -- are also seen in the circumnuclear envelope at radii 2-7 arcseconds . Their near-infrared colors do not significantly constrain their ages.Comment: LaTex, 15 pages with 1 gif figure and 5 postscript figures. ApJL accepte

    World-line Quantisation of a Reciprocally Invariant System

    Get PDF
    We present the world-line quantisation of a system invariant under the symmetries of reciprocal relativity (pseudo-unitary transformations on ``phase space coordinates" (xμ(τ),pμ(τ))(x^\mu(\tau),p^\mu(\tau)) which preserve the Minkowski metric and the symplectic form, and global shifts in these coordinates, together with coordinate dependent transformations of an additional compact phase coordinate, θ(τ)\theta(\tau)). The action is that of free motion over the corresponding Weyl-Heisenberg group. Imposition of the first class constraint, the generator of local time reparametrisations, on physical states enforces identification of the world-line cosmological constant with a fixed value of the quadratic Casimir of the quaplectic symmetry group Q(D1,1)U(D1,1)H(D)Q(D-1,1)\cong U(D-1,1)\ltimes H(D), the semi-direct product of the pseudo-unitary group with the Weyl-Heisenberg group (the central extension of the global translation group, with central extension associated to the phase variable θ(τ)\theta(\tau)). The spacetime spectrum of physical states is identified. Even though for an appropriate range of values the restriction enforced by the cosmological constant projects out negative norm states from the physical spectrum, leaving over spin zero states only, the mass-squared spectrum is continuous over the entire real line and thus includes a tachyonic branch as well

    Evaluation of stereovision for extracting plant features

    Get PDF
    Visual sensors produce an image that can be analysed by computational algorithms to extract useful information about image features. Plants have complex object structures in which images can help extract, however, not all plant features can be recognised through a single image. Stereovision enhances the single image features by adding the third dimension, depth, to obtain more accurate localisation of the plant’s structures. Stereovision is a technique that produces a disparity map of a scene through the use of two or more images taken from different points of view. Depth information can be used to enhance the detection of fruit and plant parts; however research in using Stereovision for extracting plant structures is sparse. In this paper, Stereovision is analysed in its ability to extract important features from two types of nursery plants taken in indoor and outdoor lighting conditions. From the colour images, colour and shape segmentation are evaluated on their ability to extract certain plant features, such as stems, branches and leaf. Depth images are also evaluated on their accuracy, coverage, and ability to improve image segmentation for colour images. The depth images have some gaps and missing data. The new algorithm develops the depth images by interpolating the gap data and smoothing depth images. Preliminary results show good plant feature can be extracted from depth images at indoor environment, while depth data from an outdoor environment contains more noise due to the variation in lighting conditions

    Variations of Little Higgs Models and their Electroweak Constraints

    Full text link
    We calculate the tree-level electroweak precision constraints on a wide class of little Higgs models including: variations of the Littlest Higgs SU(5)/SO(5), SU(6)/Sp(6), and SU(4)^4/SU(3)^4. By performing a global fit to the precision data we find that for generic regions of the parameter space the bound on the symmetry breaking scale f is several TeV, where we have kept the normalization of f constant in the different models. For example, the ``minimal'' implementation of SU(6)/Sp(6) is bounded by f>3.0 TeV throughout most of the parameter space, and SU(4)^4/SU(3)^4 is bounded by f^2 = f_1^2+f_2^2 > (4.2 TeV)^2. In certain models, such as SU(4)^4/SU(3)^4, a large f does not directly imply a large amount of fine tuning since the heavy fermion masses that contribute to the Higgs mass can be lowered below f for a carefully chosen set of parameters. We also find that for certain models (or variations) there exist regions of parameter space in which the bound on f can be lowered into the range 1-2 TeV. These regions are typically characterized by a small mixing between heavy and standard model gauge bosons, and a small (or vanishing) coupling between heavy U(1) gauge bosons and the light fermions. Whether such a region of parameter space is natural or not is ultimately contingent on the UV completion.Comment: 32 pages, 13 figures; revised discussion of SU(4)^4/SU(3)^4 model, bound on f is slightly highe

    Giant magnetic enhancement in Fe/Pd films and its influence on the magnetic interlayer coupling

    Full text link
    The magnetic properties of thin Pd fcc(001) films with embedded monolayers of Fe are investigated by means of first principles density functional theory. The induced spin polarization in Pd is calculated and analyzed in terms of quantum interference within the Fe/Pd/Fe bilayer system. An investigation of the magnetic enhancement effects on the spin polarization is carried out and its consequences for the magnetic interlayer coupling are discussed. In contrast to {\it e.g.} the Co/Cu fcc(001) system we find a large effect on the magnetic interlayer coupling due to magnetic enhancement in the spacer material. In the case of a single embedded Fe monolayer we find aninduced Pd magnetization decaying with distance nn from the magnetic layer as ~nαn^{-\alpha} with α2.4\alpha \approx 2.4. For the bilayer system we find a giant magnetic enhancement (GME) that oscillates strongly due to interference effects. This results in a strongly modified magnetic interlayer coupling, both in phase and magnitude, which may not be described in the pure Ruderman-Kittel-Kasuya-Yoshida (RKKY) picture. No anti-ferromagnetic coupling was found and by comparison with magnetically constrained calculations we show that the overall ferromagnetic coupling can be understood from the strong polarization of the Pd spacer

    Multiple-Scattering Series For Color Transparency

    Full text link
    Color transparency CT depends on the formation of a wavepacket of small spatial extent. It is useful to interpret experimental searches for CT with a multiple scattering scattering series based on wavepacket-nucleon scattering instead of the standard one using nucleon-nucleon scattering. We develop several new techniques which are valid for differing ranges of energy. These techniques are applied to verify some early approximations; study new forms of the wave-packet-nucleon interaction; examine effects of treating wave packets of non-zero size; and predict the production of NN^*'s in electron scattering experiments.Comment: 26 pages, U.Wa. preprint 40427-23-N9

    Factorization Properties of Soft Graviton Amplitudes

    Full text link
    We apply recently developed path integral resummation methods to perturbative quantum gravity. In particular, we provide supporting evidence that eikonal graviton amplitudes factorize into hard and soft parts, and confirm a recent hypothesis that soft gravitons are modelled by vacuum expectation values of products of certain Wilson line operators, which differ for massless and massive particles. We also investigate terms which break this factorization, and find that they are subleading with respect to the eikonal amplitude. The results may help in understanding the connections between gravity and gauge theories in more detail, as well as in studying gravitational radiation beyond the eikonal approximation.Comment: 35 pages, 5 figure

    One-Point Probability Distribution Functions of Supersonic Turbulent Flows in Self-Gravitating Media

    Full text link
    Turbulence is essential for understanding the structure and dynamics of molecular clouds and star-forming regions. There is a need for adequate tools to describe and characterize the properties of turbulent flows. One-point probability distribution functions (pdf's) of dynamical variables have been suggested as appropriate statistical measures and applied to several observed molecular clouds. However, the interpretation of these data requires comparison with numerical simulations. To address this issue, SPH simulations of driven and decaying, supersonic, turbulent flows with and without self-gravity are presented. In addition, random Gaussian velocity fields are analyzed to estimate the influence of variance effects. To characterize the flow properties, the pdf's of the density, of the line-of-sight velocity centroids, and of the line centroid increments are studied. This is supplemented by a discussion of the dispersion and the kurtosis of the increment pdf's, as well as the spatial distribution of velocity increments for small spatial lags. From the comparison between different models of interstellar turbulence, it follows that the inclusion of self-gravity leads to better agreement with the observed pdf's in molecular clouds. The increment pdf's for small spatial lags become exponential for all considered velocities. However, all the processes considered here lead to non-Gaussian signatures, differences are only gradual, and the analyzed pdf's are in addition projection dependent. It appears therefore very difficult to distinguish between different physical processes on the basis of pdf's only, which limits their applicability for adequately characterizing interstellar turbulence.Comment: 38 pages (incl. 17 figures), accepted for publication in ApJ, also available with full resolution figures at http://www.strw.leidenuniv.nl/~klessen/Preprint

    Systematic Analysis Method for Color Transparency Experiments

    Full text link
    We introduce a data analysis procedure for color transparency experiments which is considerably less model dependent than the transparency ratio method. The new method is based on fitting the shape of the A dependence of the nuclear cross section at fixed momentum transfer to determine the effective attenuation cross section for hadrons propagating through the nucleus. The procedure does not require assumptions about the hard scattering rate inside the nuclear medium. Instead, the hard scattering rate is deduced directly from the data. The only theoretical input necessary is in modelling the attenuation due to the nuclear medium, for which we use a simple exponential law. We apply this procedure to the Brookhaven experiment of Carroll et al and find that it clearly shows color transparency: the effective attenuation cross section in events with momentum transfer Q2Q^2 is approximately $40\ mb\ (2.2\ GeV^2/Q^2)$. The fit to the data also supports the idea that the hard scattering inside the nuclear medium is closer to perturbative QCD predictions than is the scattering of isolated protons in free space. We also discuss the application of our approach to electroproduction experiments.Comment: 11 pages, 11 figures (figures not included, available upon request), report # KU-HEP-92-2
    corecore